220003113

10[)10101DQQ “
y: 7011010100101y
101011111010111010010101\

SUNCAI IO
g 101101010010110011

1011011010102

11000111017 012
Q“101010001”

Yoi1010027

EVB9520
Getting Started

o & VY

PP

PW-899-101

- L el 618 e L el S L L SL L 6 sL sl el sLel sl sL sl el s el vl oLl el ol elel el oL oL ols

00000
/}11

001010100Q1\
0110101001011Q
101101101 1010101]_1\

mm11110101110;pmmY

EVB9520 Getting Started ALY

i 101101010010110011
‘§11011011o1o101111

M111000111010%°
™ “2010101009% o7

0101001”

Table of Contents

1 GEtiNG STAMEA. ... e e e e e e as 3
1.1 Set up the Evaluation Board.............oooiiiiiiiiiiic e 3
1.2 Using the serial interface (LINUX).......oo e 3
1.3 Using the serial interface (MS WINAOWS).......cooiiiiiiiiiiiie e 6
1.4 Compiling applications for the EVBO520...........ooooiiiii s 8

1.4.1 Compiling "Hello WOrIA!"......co e 8
1.4.2 Compiling the example eVb9520..........c.uuiiiiiiiiee e 10

2 Controlling the appliCatioN............ueii e 11
2.1 USiNg DUIONS 10 CONTIOL.....ceiiiiiiieiee e 11
2.2 Controlling with the help of DeVILANCONIIOL........coooeiiiiiiee e 11

RO I a1 = 1 11 U= PSPPI 18
R T B I 0 TR] (0 o2 (0 = PP PUPPPP R 19
3.2 The real tiME ClOCK.eeeiiee et e e e e e e e e e e e e e ennnas 22
3.3 The analogue digital CONVEIET...........uuiiiiiiii e 23
3.4 THE VFD DiSPIaY .. .ueeeeeeiiieiiiiiie et e e e e e e e e e e 25
3.5 The INTEITACES. .. e e e e e e e e e e e eeeeeesennnnnnnas 27

O I =TT 111 = U= TSP 28
i I I 1= 0 (=T ¢ = SO PPPRPRR 28
4.2 The 1/O MOAUIE.cooi et e e et e e et e e e e e e e e nnnneeees 30

i 32 I N 1= TV o I I 4o To [S 34
2 N o TN O o 11 RS 34
4.3 The @PPIICALION.eiiiieie et eeeeeeeeanees 34
4.3.1 A description of the appliCation............cooo i 34
4.3.2 The buttons @nd LEDS......ccooiiiiiiie et 39
4.3.3 The real tiMe ClOCK.......ccuiii i 39
4.3.4 The analogue digital CONVEMEr..........eoiiiiiiiie e 40
4.3.5 The VFD MOAUIE. ... e e e e e e e e e enannns 40
4.3.6 Communication with TCP SOCKEtS..........uueiiiiiiiiiiiiieeeeeeeee 41
S g [(oo g o) SO UPPPPPPPPRRR 42

synertronixx Page 2/44 17.01.11

111111111111

01101010010{XQ
101101101 1010101]_1\
mm11110101110;pmmY

EVB9520 Getting Started ARl

‘?11011011010101111

M111000111010%°
™ “2010101009% o7

0101001”

1 Getting Started

1.1 Set up the Evaluation Board

To put the evaluation board in operation, you have to connect it to a power supply (DC 10V
— 30V). To communicate and to control the board, you should connect it with a null modem
cable to a PC. Controlling the board is also possible with a network connect EVB9520 on.
For the serial connection, you use the COM port on your PC, the debug port on the
EVB9520 and a terminal application like tera term, hyperterminal and on Linux you can
use kermit or minicom.

If you want to control the board with a MS Windows PC, you can also use the application
DeviLANControl.

The steps in detail:
1. Connect the board with a null modem cable with the PC.

2. Start a terminal application with the following settings: 115,2kBaud, 8 data bit, 1
stop bit and no parity.

3. Now you connect the EVB9520 (without the SCB9520) to the power supply. The
PWR-Diode should light. The state of the 8 LEDs is not defined in this case, but in
most cases they also light.

4. Now switch off the power supply.

5. If the steps before worked fine, you can go on with this and the next steps. Now
mount the SCB9520 carefully on the DIL64 interface. Please note, that it is
positioned in the right way. The transformer must be as near as possible to the
RJ45 Ethernet interface.

6. Now switch on the power supply again. The LEDs RxD and TxD should flash and
the 8 LEDs should light continuously.

The applications udp_config and evb9520 start automatically in the background and now
you can read the time on the display. Perhaps the time you see is wrong.

A detailed introduction for using the serial interface with Linux or MS Windows is given in
the chapters below.

1.2 Using the serial interface (Linux)

To control the EVB9520 you can use a terminal program on a Linux PC. After starting the
board you have to login with the below given username and password. In picture 8 you
can see a screenshot.

username : root

password : pass

Please note, Linux is case sensitive and you must distinguish between upper case and
lower case characters. There are several terminal application for Linux available, well

synertronixx Page 3/44 17.01.11

EVB9520 Getting Started

known are minicom and kermit.

22000113

i 001010100‘6 e
$101101010010115
101101101 1010101]_1\

01011111010111011’010101

SRRAUAUOIUL:
101101010010110&1

“511011011010101111

\111000111010
““101010001”

0101001”

synertronixxBzl:™% com AdewsttySo 115200
zetting speed 115200

C-a3 exit, C-x modem lines status
[STATUS]: RTS CTS DSR DCD DTR

Welcome to the Erik's uClibc development environment,

5ch3520 loging []

Figure 1: Login with a terminal on a Linux PC.

In screenshot 2 you can see the output you get after a successful login. The commands /s
(list segment), pwd (print working directory) and cd (change directory) can help you to

have a look at the embedded Linux system and it's file system.

synertronixxdzl +¥% com AdewsttySo 115200
zetting speed 115200
C-a exit, C-x modem lines status

[STATUS]: RTS CTS DSE DCD DTR

Welcome to the Erik's uClibc development environment,

zch9520 logint root
Pazsword:

BusyBox w1,6.0 (2007-08-15 12:42:42 CEST) Built-in shell (ash)
Enter 'help' for a list of built-in commands.

[]

Figure 2: The login succeed.

It's time to configure the network interface. In figure 3 you see the file

letc/network/interfaces. It is opened with the editor nano, the editor vi also exists on the

system.

The entries of this file are maybe not the same, especially “modulname

serial”,

tcpport”

and “udpport” can vary or even doesn't exist. These entries are made W|th the appllcation
udp_config. These entries does not affect the use of the Linux system, they are only used

by the application evb9520.

synertronixx Page 4/44

17.01.11

11000111

ﬂ 00101010(}Q Sy
0110101001011Q

101101101 1010101]_1\
0101111101 01110]7]010101

EVB9520 Getting Started

“511011011010101111

WM11000111010%
““101010001”

0101001”

GHU nano 1,312 File: Aetoc/networksinterfaces

B Configure Loopback
auto lo
iface lo inet loopback

auto eth

iface ethd inet static
addresz 192,168,1,59
netmaszk 2b5,255,256,0
broadcast 192,162,1,255
gateway 192,168,1,254
modulname EVBIRZ0
zerial 0
tocpport 3333
udpport 8002

[Read 14 lines
B Fead File @Y Prev Page Cut Text M
il Where I= g Mext Page UnCut Text@ll To Spell

il Writelut
Bl Justify

Get Help
Exit

Figure 3: Changing the IP with nano.

By default, the IP address is set to 192.168.1.199. If you want to change it or something
else, do it here.

To finish the configuration and use the new entries, use the following commands on the
command line.

ifdown ethO

ifup ethO

The first command stops the network device and the second starts them again. The output
of these commands are shown on the figure 9 below.

ifdown ethd

ifup etho

ethiz link down

ADDRCOMF{METDEY_UR): ethi: link is not ready

ethi: link up, 100Mbps, full-duplex, lpa OwxdBEL
ADDRCOMF {METDEY_CHAMGE)2 ethi: link becomes ready

[]

Figure 4: Restart the network.

To test the new configuration, you can use the command ping. A possible way to use ping
is shown in figure 5.

A good strategy to test the network is, first ping your own IP and if that works, ping another
member in your network. In the figure 5 you see some additional parameters, the first one
is ¢ and the second is 4. With this parameters you only send 4 ping's instead of pinging
continuously. The last parameter is the IP address you want to ping.

synertronixx Page 5/44 17.01.11

1000113y
o gplOlOlOOQ

ﬂ 011010100101“1Q
101101101 1010101]_1\
10101111101 0111031’010101,

EVB9520 Getting Started Yoo

‘311011011010101111

1111000111010
“°l01o10001”

0101091”

ping -c 4 192,168.1,99

PING 192,168,1,99 (192,168,1,99): 56 data bytes

B4 bytes from 192,168,1.99; seq=0 ttl=b4d time=0.E ms
B4 bytes from 192,162,1,93: seq=1 ttl=B4 time=0.4 mz
B4 bytes from 192,168,1,99: =eq=2? ttl=64 time=0,4 m=z
B4 bytes from 192,168,1.99; =2eq=3 ttl=bd time=0.4 ms

-— 192,168,1,99 ping statistics —

4 packets transmitted, 4 packets received. 0¥ packet loss
rnﬁnd—trip mindavgmax = 0,450,406 mz

#

Figure 5: Checking the network configuration ping.

1.3 Using the serial interface (MS Windows)

It is also possible to communicate with MS Windows and a terminal application with the
EVB9520.

First of all you have to start the terminal application. In this document we are using the
hyperterminal. The first step is to give the new connection a name, as shown in figure 6.
Click on OK to pass this step.

Beschreibung der, ¥erbindung @El

| .
9 Meue Werbindung

Geben Sie den Mamen fur die neue Werbindung ein, und weizen
Sie ihr ein Symbal 2u;

Marmne:

SCES520

Symboal:

| ok || abbrechen |

Figure 6: The name of the new connection.

The next window you will see is shown in figure 7. Here you choose the right COM port
and also pass it with OK.

synertronixx Page 6/44 17.01.11

EVB9520 Getting Started

220003113

10010101000 ey
p 0110101001011
01101101101010111\

101011111010111015010101\
YRS UODUNE"
41 101101010010110011

\31101101101 0101111”

“111000111010
Q0101010001”

Verbinden mit

Geben Sie die Bufnummer ein, die gewshlt werden zoll:

Land/Region:

Ortzkennzahl: |:|

Bufnurmmer; | |

Werbindung
herstellen Lber: |

COM12 v|

| ok || sbbrechen |

Figure 7: Choosing the right COM port.

0101001”

In figure 1 you see the settings from the chosen COM port. In Table 1 are the needed

settings shown.

synertronixx

Eigenschaften von COM1 2

Anzchluzzeinstelungen |

Bits pro Sekunde: | 115200 v |
D atenbits: |8 v|
Paritat; |Keine v|
Stopphits: |1 v|
Fluzzsteuerung: | EelaRassi

[Wwiederherstellen]

[Ok l [&bbrechen] [UI_:uernehmen]

Figure 8: Settings of the serial connection.

Page 7/44

17.01.11

EVB9520 Getting Started

Table 1: The parameters for the COM port.

Bits pro Sekunde 115200
Datenbits 8
Paritat keine
Stoppbits 1
Flusssteuerung Xon/Xoff

7000113
gplOlOlOOQ
/ﬂ

011010100101“1Q
101101101 1010101]_1\
zmM11110101110;pmmY

SUMRAIIOIUAL
10110101001011om1

‘311011011010101111

W
\311100011101%
20101010007

0101091”

In figure 4 is the output on the hypertermnal after boot up shown. The username and the

password is the same as already mentioned in chapter 1.3.

username root

password pass

The configuration of the IP address is also the same like in chapter 1.3.

4 SCB9520 - HyperTerminal

Datei Bearbeiten Ansicht Aprufen Ubertragung 2

0K

creating 12c device...

Starting ProFTPD: done

Starting SHMB services:

Starting NMB services:

Initializing EVB9520. ..
eth@: link up, 108Wbps, full-duplex, lpa Bx45E1

ADDRCONF (NETDEY_CHANGE) : eth@®: link becomes ready

fdev/ioB missing, starting io.sh to create it

Initialize /dev/ioB with Major Number 242 and Minor Number 1

fdev/ufdB missing, starting vfd.sh to create it

Initialize /dev/vfdd with Major Number 243 and Minor Humber 1

/dev/ttyS0 missing, starting serial.sh to create it

Initialize /deuv/ttySO with Major Humber & and Minor Number 64

i2c fdev entries driver

I2C: i2c-0: PHA I2C adapter

Serial: 8250/16550 driver $Rewision: 1.90 % 1 ports, IRQ sharing disabled
serial8250.0: ttySH at MMI0 Bxc@30080 {irg = 45) is a 16550A

done
done

Helcome to the Erik’'s uClibc development environment.

sch9520 login:

Verbunden 00:00:33 Auko-Erkenn, 115200 8-M-1

Figure 9: The output of the Hyperterminal.
1.4 Compiling applications for the EVB9520

1.4.1 Compiling "Hello World!"

For compiling applications for the EVB9520 you need a PC equipped with Linux. You

synertronixx Page 8/44

17.01.11

L27058Tan

‘1)‘00101010OQ1\§
7401101010010135
701101101101010113y,

£1011111010111010101

EVB9520 Getting Started YN

"1910110101001011002
1011011010101

\) 0
110001110105
2001010100927

S1010027

always compile on the PC with the cross compiler and then you copy it to the board. The
cross compiler can be found on the provided CD.

First extract the compiler and set it up for using. Below you can see the commands. With
mount we can use the content of the CD. Some Distributions mount CDs, pen drives and
so on automatically. If you use one of these Distributions, you don't need the first and the
last command.

mount /mnt/cdrom

cd /

tar x3f /mnt/cdrom/home/software/arm-linux-gcc-4.1.2.tar.bz2
umount -1 /mnt/cdrom

The command tar extracts the archive into /usr/local/arm. If this path doesn't exist, it will be
automatically created. To use the compiler, we have to extend the PATH variable. To do
this, we will use the command export as shown in the next line.

export PATH=S$SPATH:/usr/local/arm/arm-linux-gcc-4.1.2/bin

The PATH contains all paths to directories with executable binaries or shell scripts. If you
don't want to execute this command after every boot up, you should add this command
into the /etc/profile.

Again, the compiler will be used on the PC and not on the EVB9520! All these operations
you see above, must be done on your development PC and this one must be equipped
with Linux.

In listing 1 you can see the source code of "Hello World!".

#include <stdio.h>

int main (void)

{
printf ("Hello World!\n");

return O;

Listing 1: The application "Hello World!"

Use the next command and its parameters to compile:

arm-linux-gcc -o hello -Wall hello.c

The parameters -o hello sets the name for the created binary, if you wouldn't set it, the
default name “a.out” would be used, which is not very useful. The option -Wall shows more
warnings than the default. For good programming you should prevent every warning. The
last parameter is the file to compile.

After successful compiling you can copy the binary to the EVB9520, this can be done with
ftp or scp. The file has to be copied to the directory /usr/local/bin. An example for copying
with scp is given below.

scp hello root@192.168.1.199:/usr/local/bin

synertronixx Page 9/44 17.01.11

11000111

o1 0010101000 Sy
‘0110101001011Q
101101101 1010101]_1\
mm11110101110;pmmY

EVB9520 Getting Started wnerluonis:

‘?11011011010101111

M111000111010%°
N ““101010001 o7

hxo:looz”

If you copy this file the first time, you have to change its rights and permissions with the
chmod command. After that, you can execute it on the command line. For this, see the
next figure 10.

hello

-sht hello: Permizsion denied

l= -al Ausrslocalsbindhello

B e i T 1 root root hE6 Jan 1 02:10 Ausrdlocal/bindhello
chmod wu+x Ausrdlocalsbinshello

1= -al Ausrflocalsbindhella

—FWEF—r— 1 root root 0026 Jan 1 02:10

hello

Hello lWorld!

[

Figure 10: Using chmod and execute "Hello World".

1.4.2 Compiling the example evb9520

On the provided CD you get the source code of one example application. This code can be
used for your first applications. To compile it, you can use the following command.

make -f evb9520.mak rebuild

Note, this compiling also has to be done on a Linux PC and not on the EVB9520 itself.

On the CD there is also provided the project file evb9520.vpj. If you already have the editor
slickedit you can use this file for comfortable use.

To copy this file also to /usr/local/bin just follow the hints we gave you in chapter 1.3.
Executing this application is done with the following command:

evb9520

synertronixx Page 10/44 17.01.11

111111111111

01101010010{1Q
101101101 1010101]_1\
mm11110101110;pmmY

EVB9520 Getting Started ARl

‘?11011011010101111

M111000111010%°
N ““101010001 o7

hxo:looz”

2 Controlling the application

2.1 Using buttons to control

The application start with the following command.

evb9520

After connecting the EVB9520 to the power supply, the application evb9520 starts in
background. The typical behaviour is, all LEDs are lightning and on pushing one button the
LED stops lightning until the button is not pushed. The first two buttons can be used to
navigate through the menu.

The available points in the menu are:
® Displaying the current time.
® Displaying the current voltage.
® Displaying the input on the device ttySA2.
® Displaying the input on the device ttySO0.

An output on the the screen is not available, because printf outputs are quite heavy for the
controller. You can also control the board with the help of ssh. First you login into the
board, an example command is shown below.

ssh root@192.168.1.199

2.2 Controlling with the help of DeviLANControl

First you must supply the EVB9520 with power (DC 10V — 30V). Then connect it with a null
modem cable to the PC. You have to use the debug interface for this connection. To login,
start a terminal application. On figure 11 you can see an example session.

synertronixx@zl:™F com AdewsttyS0o 115200
zetting speed 115200

C-a exit, C-x modem lines status
[STATUS]: RTS CTS DSR DCD OTR

Welcome to the Erik's uClibc development environment,

2cb9520 loging []

Figure 11: The login prompt

synertronixx Page 11/44 17.01.11

11000111

o1 0010101000 Sy
‘0110101001011Q

101101101 1010101]_1\
zlilllOlOllloypmmY

EVB9520 Getting Started YeIOnL:

‘?11011011010101111

M111000111010%°
N ““101010001 o7

hxo:looz”

Some features of the EVB9520 can be controlled with a remote PC equipped with MS
Windows. For this, we need to start the application udp_config with the following command
on the board:

udp config
If you don't change any settings in the boot up scripts, udp_config is already running on
the board and you can skip this step.

The screenshot 12 after boot up.

syhertronixxBzl Y com AdewSttySn 115200
zetting speed 115200

C-a exit, C-x modem lines status
[STATIS]: RTS CTS DSE DCD OTR

Welcome to the Erik's uClibc dewelopment environment.,
=chb9520 login: root

Pazsword:

BusyBox w1,6.0 (2007-08-15 12:42:42 CEST) Built-in shell (ash)
Enter 'help' for a list of built-in commands,

]

Figure 12: The application udp_config

Now please start DeviLANControl on you MS Windows PC like you can see in figure 13.
Here you can see the tab ,Verbindungsmanager®. In this tab you can see all active boards
in your network. Perhaps you have to change the setting ,UDP-Meldung senden an® to
,IP2002/SCB9328 (Port: 80)“. If you cannot see the board, try clicking the button ,suchen®.

synertronixx Page 12/44 17.01.11

EVB9520 Getting Started

220003113

aglololooq Sy
ot 0110101001011Q
101101101 1010101]_1\

10101111101 0111011’010101,

g INRAIAIIVA
101101010010110M”

\31101101101 010111’”

W11000111020%
““101010001”

Metz 1: 192.168.1.16

Konfiguration lesen Korfiguration speichern Hilfe... Uber... Tinimieren

Tt Manager | @ Socketrr| @ compc| [T pateirc |

LAN

b odule im Metz:
@ todule im Netz Suchen

[~ Zyklisch

Verbindung
(« TCRJAF
" R5232

-
" Modem
~

Kanfiguration tiber UDP ™ aktivieren/D aten kopieren

UDPMeldung senden an; + SC12/5C13 [Port 3001)
" |P2022/5CE2000/5CB9328 (Port: 8002)

IP: 1.1.1.1 <-Werbinden

Metmask: |0.0.0.0
Gateway: |1.1.1.1
Seriennr.: |0

-
we T B 5B
Port: ,Di

Mame: |? 1

Figure 13: The application DeviLANControl.

0101001”

In figure 14 you can see the output from evb9520. This application doesn't give messages
to the stdout, you just get some messages if errors occur.

synertronixx

Page 13/44

17.01.11

11000111

o1 00101010(}Q Sy
‘011010100101m
101101101 1010101]_1\
01011111010111031’010101

EVB9520 Getting Started AeRomie:

‘?11011011010101111

1110001110104
N ““101010001 o7

0101001”

B2 root S [mtdblockd]
evb9a20
B8 zerial device 'Sdev/ttyS0' open
B8 COMD setting flags failed., errno=h Inputfoutput erraor
EVBEISZ0: zerial device 'Adew/ttySAZ' open
EVEIS20: COMAZ Init. baudrate=115200. databits=2, parity=M, flowcontrol=N

EVESRZ0: start of program 'Yersion 1,00,0 04,07,2007°
EVEARZ0: Init keyboard interface
EVBEISZ0: Setting keyboard az command interface

EVBIG20: Setting kewboard as command interface 1 (0]
EVBEISZ0: Setting keyboard az command interface 2

EVEI520: Setting keyboard as command interface 3 (0]
EYB9520: Setting kewboard as command interface 4 (0)

EVEISZO: i= running

Figure 14: The output of the application evb9520.

In figure 15 you can see the DeviLANControl. In this picture you can see, that
DeviLANControl found one board. Now you can connect to it with the button "Verbindung".

Every possible communication partner you see in DeviLANControl is expandable. In
expanded view you can see some further information like the IP address, the used port,
the net mask and the MAC address.

A short information to udp_config:

To identify or configure several running SCB9520 and EVB9520 in your local area network
(LAN) you can use the application udp_config. For communication there is a command
interpreter implemented. It reacts on UDP broadcast messages and answers with the
current TCP/IP settings. Over UDP you can set the basic network settings. For this the

file /etc/network/interfaces will be modified. It contains the network settings. For safety the
old file will be saved as interfaces.pre_udpsocket.

To configure one board you can use DeviLANControl. An example session to configure the
network settings is given below.

Choose the board you want to control in the tree.

Activate “Konfiguration iber UDP” (now, automatically the data from the board gets
copied to the input field).

Activate “UPD-Meldung senden an (Port 8002)".
Change or edit the settings you want to.

Confirm the settings by hitting the button “Set”.

The new settings will be used after rebooting the board.

synertronixx Page 14/44 17.01.11

220003113

aglololooq Sy
0110101001011“

1’{,1101101 1010101y,
10101111101 0111011’010101,

EVB9520 Getting Started

“\111100011101
““l01010001”

'0101001”

Metz 1: 192.168.1.16 nicht verbunden

Korfiguration lesen Konfiguration speichern Hilfe... Uber... Minimieten

T Manager | @] socketpr | @] compc| [DateiPC| B EvBss2o |

LM
=i} Module im Netz: 1
- @ 192.168.1.99 : EVB9520 SUBTE

® Port: 3333 [~ Zyklizch

® [Gateway: 132.168.1.254

: gEtEnPas:kD. 25R.255,255.0 M

& Mr: 000000 Feszet

® Mame: EVESSH20

e MAC:000C7F 01 23 46 Werbindung
v TCPAP
" RA5232
[
" Modem
r

Fonfiguration ber UDP [aktivieren/D aten kopiersn

UDP-Meldung zenden an: ¢ SC12A5C13 [Part 8007
(v |P2022/5CE2000/5CE9328 (Port: 8002

[F: 192.165.1.93 <Werbinden

Metmazk: | 255256 25650

Gateway: [192.168.1.254
Senennr.; |000000

| DHCP Server vensenden

Set

MAC oo |oc 7P o1 |23 |46

Part: 3373

Mame: |EVES520

Figure 15: DeviLANControl after connecting with the
application udp_config.
After successful login, the string “modul typ 95207 is sent to the board. If the EVB9520
receives this string, it creates a new tab with the name "EVB9520" (see figure 16).

The new tab contains some controlling elements. Under "Port A" you can see the state of
the LEDs and under "Port B" you can see the state of the switches. In the middle of the
widget you can see the current analogue value in the "ADC" section (dimension is mV). In
this area you can also set the current baud rate and gain.

Below the "ADC" section is the "time" area. You can see the current time in it and even set
it. You must have a look at the string to set the time, it must be exactly the same as shown

synertronixx Page 15/44 17.01.11

220003113

1 010101000 “
ot 011010100101
1011011011010101]_1\
1010111110101110%010101\

EVB9520 Getting Started

M 10110101001011001z
\31101101101 0101111”

WM110001110195
Q“101010001'7

onloolﬂ

in the widget.
In the "Modus" section you can control the output of the display.

Netz 1: 192.168.1.16 verbunden mit 192.168.1.99 RX

Komfiguration lesen Konfiguration speichern Hife.,, Ober,., Miriristen

Te Manager | [SocketPC | [comPC| [DatsiPC = E¥B3520 |
Digitale Eindfuzgange

Port &, Fort B
LED 1. & fif 0 51 1
LED 2 &+ 1 7 0 52 1
LED 3 &+ 1 07 0 531
LED & &+ 1 07 0 54 1
D5 @10 O 55 1
LEDE: &+ 1 7" 0 SE 1
LED Y &+ 1 07 0 57 1
LEDS: &+ 1 0 58 1
ADC
K.anal 0: kI 513 n\g
Baudrate:

Set
Yerstarkung: |1 J
EVBI520Zeil

16:41:56 Wed, 12.03.2007

Enter Time Set

b odus

Modus: 0 Tirme ﬂ Set

Figure 16: The new register "EVB9520".

If you send the string “data_renew” to the board, the current state of the LEDs and
switches, the analogue value and the time will be updated. One example is shown in the
figure 17.

DeviLANControl updates specific values in dependency to the current mode. If it runs in
time mode, the time is always correct. If it is in ADC mode, the value shown in
DeviLANControl is refreshed several times per second.

synertronixx Page 16/44 17.01.11

EVB9520 Getting Started

1}11'066:111\“\
2 0010101000y Sy
4101101010010 5
71011011011010101yyy,

41011111010111010101
SURAIS NN
".’} ! 101101010010110011“

0110110101012
1110001110107

Metz 1: 192.168.1.16 werbunden mit 192.168.1.99

konfiguration lesen Konfiguration speichern Hilfe,.. Uber... Iinimieren

% Mansger [®] SocketPC | compr| [DateiPr| B Eveasan|

Stream Socket 1:1321681.16 -

Part: {3333 Statuz: Yerbunden Trennen

P, [1s2ies1sa

Fehler beim YWerbinden [Quittung] [winzock:10081)

Empfangen: 294 Bytes’s Gesamt 46343 Bytes
14 Zeilen/s 2210 Zeilen

Gesendet: 0 Butesfz Gesamt 0 Butes

Lizten Socket

Part: |3333 Status: Listening Stop

i

Senden an

Send 3B v Protokoll Senden Laschen

|data_renew|

:
i

Empfangen won

|132.168.1.93 ¥ Protokoll Léschen
.3

time 16:43:40 wed, 12.09.2007
portb ff
tine 164340 w'ed, 12.09.2007
portb ff
tinne: 16:43:40 wed, 12.09.2007
parth ff
time 16:43:40 Wed, 12.09.2007

< |

(=

|

Figure 17: The command data_renew.

AN 10
N8101010097°

®lo1007

synertronixx

Page 17/44

17.01.11

1111111111

bglOlOlOogl\
0110101001°1m

101101101 1010101]_1\
01011111010111010010]&}

EVB9520 Getting Started ARl

‘?11011011010101111

M111000111010%°
™ “2010101009% o7

0101001”

3 The hardware

The Evaluation Board EVB9520 is an example application to show you the features of the
SCB9520.

Some characteristics of the board:
7. 10/ 100 MBIt Fast-Ethernet Interface.
8. USB Device Interface (USB Low- and Full-Speed Support).
9. USB Host-Interface.
10.16-Bit A/D converter.
11. 3 serial RS232 interface.
12.1?C-Interface (max. 2 MHz).
13.8 digital inputs and outputs (switches / LEDs).
14.Gold cap buffered real time clock.
15.VFD Display.
16.power supply 8 - 30V DC.
17.1 carrier for the SCB9520.
The figure 18 shows the position of the most interfaces.

You can find current information like the schematic EVB9520 on the homepage of the
company synertronixx.

synertronixx Page 18/44 17.01.11

220003113

agl 0101003
y: 0110101001011
ﬂ101101 101 10101011“
101011111010111010010101\
)

YRS UOIUI
/10110101001011002
“\“11011011010101111

M11000111010%
\\ Q“101010001 7"

11111111111

8 =P Power
Ethernet
RJ45
Switches
USB
LEDs
USB
1
ttySAO
Reset
;—» ttySO
ADC i—» ttySA2

...

Figure 18: The structure of the Evaluation Board.

3.1 The structure

The real time clock and the ADC are connected to the I12C bus. In order to control or read
these parts you have to use their addresses, which stands in their data sheets.

The LEDs and switches are both connected to the same data bus. With the help of the
address decoder (shown in figure 19) you can choose to control the VFD, the switches or
the LEDs. If the /CS3 is low and A16 and A17 too, the /CS_541 on the decoder output also
becomes low.

synertronixx Page 19/44 17.01.11

111111111111

/1 ’001010100Q Fe
‘011010100101m
101101101 1010101]_1\
01011111010111031’010101

EVB9520 Getting Started

“511011011010101111

1110001110104
N ““101010001 o7

101007

Address decoder

R46 49.9
RS 449
MUY Rss 4a.9"
o P12 — [>/Cs 541
16% 13 c9 5 #CS_LCD
CS3 19y 73 FpS — }— /CS_16C550
IC1172
24LUC1390

Figure 19: The address decoder.

The /CS_541 leads to another address decoder (see figure 20). This decoder is connected
to /RD and /CS3. If /WR, /CS_541 and /CS3 is low, /CS541_WR* becomes low and the
LEDs will be set according to the bus shown in figure 21.

5U tolerant bus driver

IC11/1,
Z4LUC1390,
Ecs541 un§45) DMUX
) 9 9 4
ﬁ - el 0 %
3#52 G
<A1 3

Figure 20: The Differentiation between reading and writing.

To read out the switches /CS_541 and /WR must be low (please have a look at figure 21).
The state of /CS_541 can be set by software and the states of /RD and /WR are changing
continuously and oppositional, which is implemented in the PXA 270.

synertronixx Page 20/44 17.01.11

}11000111“\\

70101010003
100 gy,

%
0019

Vi

7

1101010010173

Wy

11011010101y

110

, 11\“
101011111010111010101

Wo

o

WY

)]
w0y

1011010100101100

|

SN

EVB9520 Getting Started

]
W

A

1010.1‘
107"
77

1011011010101
1110001110
20010101009

11
N

oy
“Q

YQi1010027

a

uoungysn

(2

uoynquysnd

=g

uoynquysng
ad

uoynqysng
g

oy ngysn
.T

o ngysn
Z

uongysn

g

ah
af
af
ah
af
af
af
af

HMv_LL
SR

L

o=t
a3t
a3t

a3t
a3t
a3t
o=t

Ry
JSFO
#1031
iKY
ZF0aT
T
W=gsiky
E037

4T

24300 :
L
uounqysn
T e
L

_n_vnmE_._KU||_l
a0

H I
E =
E
E
E fa}
H =
3 flrmmd
4" .“L\
415+
| e
JTFSIOHFS TEEE | T
fts]
|.nhm.nu Ta
3 ad =28 T
=— & 2 b7
54+ FA
& ET
=) 5
El +T
e A
5 5T
£H oS
I3 7T
oH zh
£ TH TA B
Z =33
FII
arE

T

Dﬂm_ o
=

&

T

ﬁ

g
ne 08 |+
nd 0 g
ne + 02 |5
ns 08 5
O
ne 0e |5
iz @ =
o o =

cll

:
L\P‘\? NI [’ %

Figure 21: The switches and LEDs.

17.01.11

Page 21/44

synertronixx

111111111111

011010100101“1Q
101101101 1010101]_1\
0101111101 01110%010101

EVB9520 Getting Started

‘?11011011010101111

1110001110104
N ““101010001 o7

0101001”

3.2 The real time clock

The M41T00 uses less current (about 0.3 mA). Please refer to the data sheet for further
information. The real time clock can be supplied by the on board gold cap. If the main
power supply is not connected, this cap can supply it for up to one week. The RTC offers
the century, the year, the month, the hour, the minute, the second and the name of the
week day. All is decoded in BCD numbers.

The wiring of the M41TO00 is given in the figure 22.

92.768kHz RTC
Z [out osc _J._I?q"]l_
&_ﬂl_ﬁ_ srL 0sco = R&S +5U)
- =rew U 1 aps uBAT
-
1c13 CH4 —
M4iTean B,4F /5,50 D2

BRVS3

GND
Figure 22: The wiring of the M41T00.
To control or read the M41T0O the generic Linux I1?C bus driver is used.
On reading or writing you always get or set an array of 8 bytes.

addres data
S D7 D6 D5 D4 D3 D2 D1 DO | function range
0 ST 10 sec second second 00-59
1 X 10 min minute minute 00-59
2 CEB | CB 10 hour hour year/our | 0-1/00-23
3 X X X X X day day 1-7
4 X X 10 date date date 1-31
5 X X X X month month 1-12
6 10 year year year 0-99
7 OuT | FT S calibration control

Table 2: The register of the M41T00

In table 2 you can see the content of the register of the M41T00. The bits marked with an
X contain useless information. If the ST bit is set to one, the oscillator stops and if you set
it back to zero, it starts within a minute. If the CEB bit is set, you can recognize a new

synertronixx Page 22/44 17.01.11

111111111111

011010100101“_Q
101101101 101010111\
mm11110101110;pmmY

EVB9520 Getting Started wnerluonis:

‘§1101101101o101111

M111000111010%°
N ““101010001 o7

hxo:looz”

century on checking the CB bit. If this bit toggles, another century has gone. The bits S, FT
and OUT are used for checking the oscillator, they are not used in this project.

All time information is coded in BCD. Use the following formulas to calculate to BCD or to
decimal numbers.

X

Xm:(f +10+ X ,,mod 10 (1)
X

xléz(_loo 16+ X ,,mod 16 (2)

3.3 The analogue digital converter

The ADC component ADS1110 requires a current of 0.24 mA. It has a resolution of 16 bit
and 4 adjustable steps for the baud rate and the gain. For more information, please refer
to the data sheet.

18 16-Bit ADC

L‘*"r 4

upot 051116-A6
Cc2a8
1
UTM+
S | UIN- UDD Aoy
+ Q<
ez 4 SDA GND
Arl % 32 arL cagt

Figure 23: The ADC.

The device is connected to the I1°C bus and can also be controlled with the help of the
generic Linux driver.

In Figure 23 you can see the schematic. The ADS1110 has an adjustable sample rate from
15, 30, 60 or 240Hz. The gain is adjustable, too. Here you can choose between 1, 2, 4 and
8. The higher gains are used for higher resolutions on lower voltages. The formula to
calculate the value on the input of the ADC considers the gain, so the result is always the
right one. The formula you should use, is given under 4.

There are three registers. Every register contains 8 bytes. The first two bytes are the data
bytes and the last one is the configuration byte.

synertronixx Page 23/44 17.01.11

EVB9520 Getting Started

111111111111

01101010010{XQ
101101101 1010101]_1\
mm11110101110;pmmY

SUMIIOIUI:
101101010010110011 Il

‘?11011011010101111

M111000111010%°
™ “2010101009% o7

0101001”

The module can be read as often as you want to. If you read it faster than the new value is
written to the data registers, you just read the same value twice or even more often. A bit,
that shows you an ended conversion is not available.

Bit

7

6

5

4

3

Name

ST

0

0

SC

DR1

DRO

PGA1

PGAO

Table 3: The configuration register of the ADS1110.

In Table 3 you can see the configuration register. The seventh bit has no use for the
continuous mode. The fourth one must be zero for continuous mode. The bits 3 and 2 are
setting the baud rate and the bits 1 and 0 are setting the gain (see table 4 and 5).

DR1 |DRO |datarate maxcode (max. resolution) | mincode (min. resolution)
0 0 240SPS 2047 2048

0 1 60SPS 8191 8192

1 0 30SPS 16383 16384

1 1 15SPS 32767 32768

Table 4: The bits to control the baud rate.

PGA1 PGAO gain
0 0 1
0 1 2
1 0 4
1 1 8

Table 5: The bits to control the gain.

With formula 3 you can calculate the value on the ADC. To prevent float calculating you
can use the factor 1000.

AU=

data-2,048

gain-(—mincode)

data-10

 gain-(—

mincode)

(3)

(4)

The voltage divider has an proportion from 1 to 4,878 (see formula 7). For the right result
use the factor 10 and put it into the formula 4.

synertronixx

Page 24/44

17.01.11

1111111
LA

001010100Q1\
0110101001011Q
101101101 1010101]_1\

"10111110101110%0101“

EVB9520 Getting Started RO

"1011010100101100
‘§11011011o1o101111

M111000111010%°
™ “2010101009% o7

0101001”

AU=U 20500
=Uy
8k20+261kQ
2,05
1
AU=
4,878 @

3.4 The VFD Display

The on board display is a Vacuum Fluorescent Display (VFD). The VFD is connected to
the board with an 8 byte data bus. The power supply is 5V and this display offers 11
monospace and proportional fonts.

The schematic is shown in figure 24.

synertronixx Page 25/44 17.01.11

22000113

i 0010101063 i,
{;0110101001011Q
01101101 1010101]_1\

10101111101 01110311010101

4 AU
101101010010110&1

“511011011010101111

\111000111010
““101010001”

“101001”

EVB9520 Getting Started

[0}
0
-
>
[
%
od
[Figen)
>o
® 00D
[esusRooyosl o
< o @ 0 @ © aNg I_|Z
)
>
NG+ 0
>
=] b
9 g
™ oo i
— FIN0O OCdNOMTON
O + NNz ooofoooao
T
¥ < |+
N Al hA
5 || rfef N oof o] ®| if oy]
(&) b N7 A
73 =1
Sk
[[m=]
|Z
©
Ve
wn
o
P
o
>
O
v
w S S N
U ™ ™ %) | N ol o] +] oof of
pils pils il < | < < <) < < <
Q) O ™ O 0 O 0 =
~— < < < [
o« - - -]
N N N AN TIO0N D <+
] =z =z = hmOmomdm ~
— 7] 7] 7] =
"‘ o
C Al Al Al 2
— N N » JdNOTOOVN® X x
>~ >~ >~ olcccccccc oo |
+ + + jad =z
> <« <« < 7]
o O o O +| 19 O o o
— < o oo ol ofN @l o] o)
a 4 b
a
n © =
- o
(]
=
d
1% of X PEEEEEE
d = < JddH449nN
g d99d4ddqg
[[[L/\/\/\/\/\/\/\/

Figure 24: The VFD display.

To write some data to the display /CS_LCD and /WR must be low. /CS_LCD becomes
low, if /CS3 and A16 are low and A17 is high.

The VFD has a pin RS, but this cannot be used. On other displays, this bit is normally
used to differ between data and command words. Here you just send your commands or
data word by word to the display and everything works fine. For further information, please
refer to the data sheets.

synertronixx Page 26/44 17.01.11

EVB9520 Getting Started

3.5 The interfaces

}1106 11111 N
Iﬂfz’gglol 01003{‘“\\
7701010100101y,

,,;}’21 101101 10101onf§‘\\
£1011111010111010101y

SUMIIOIUI:
14101101010010110014

1011011010101

\) 0
110001110105
2001010100927

S1010027

There are several available interfaces on the EVB9520. You can find the I2C bus, three

RS232, one Ethernet interface, one USB host and one USB device controller.

Two of the serial devices are internal. For the third external one you need the module

8250. You have to load it by yourself, e.g. with a rc-script at boot up.

For the I1°C bus you must load the modules i2c_core, i2c_pxa and i2c_dev. The i2c_core

will be loaded by Linux automatically, but the others you must load by yourself.

synertronixx

Page 27/44

17.01.11

111111111

001010100Q1\
0110101001011Q
101101101 1010101]_1\

mm11110101110;QNMv

EVB9520 Getting Started RO

"1011010100101100
‘311011011010101111

M111000111010%°
™ 2010101009%° o7

0101001”

4 The software

The application evb9520 and its source code is an example to show the customer how to
program on an embedded Linux system. For this you need the toolchain buildroot to cross
compile for the EVB9520.

The EVB9520 is equipped with the application evb9520, which uses several features from
the board.

To develop you should connect the board like it is shown in figure 25. The board is
connected with a null modem cable to the development PC and it is connected to a router,
hub or switch to get network access. The development PC (Linux) is connected to the
network. Perhaps you also want to control the board with the MS Windows application
DeviLANControl. If yes, you need a Windows equipped PC, which is connected to
network, too. After you connect everything in the right way, you can communicate with it
with the help of a terminal program. For copying you can use scp or fip.

Router

———

Development-PC Remote-PC (MS Windows)
(Debian GNU/Linux) with DeviLANControl

Eval-Board
EVB9520

Figure 25: The connection board, development PC and Remote PC.

4.1 The kernel

The board is equipped with a Linux kernel 2.6.31 and Busybox. Busybox is a set of
applications, which provides a shell and tools like /s (list segments), cd (change directory)
and mkdir (make directory). It is often used on embedded systems, because of its little
size.

In figure 26 you can see an overview of the communication between an application and a
kernel module.

synertronixx Page 28/44 17.01.11

11000111

o1 00101010(}Q Sy
’0110101001011Q
101101101 1010101]_1\
om111110101110;91mm

EVB9520 Getting Started

“511011011010101111

1100011120104
ot ““101010001 o7

0101001”

Kernel modul: io_scb9520.c — | File operations executes
— modul function
Lint 10_Open (...){ _
Anwendung: io.c
' main(){
, int fd=open(,/dev/i00,
intI0 Toctl(... ® RDWR"):
o Fee) i, joct1(fd,10_CMD,ARG)
unsigned long arg) {
switch(cmd) {
case IO_CMD ClOSE(fd);
- :
'
} A
) Using the
int character device
I0 Close(...){
I
J L | ioctl() parameter

struct file operations fops=/{

.ouWner = THIS MODULE, Command Line
.open = I0_Open, . .
O & e |1nsm0d io sch9520.ko
P
insmod calls 10O _init

int init 2 Anit() {
register chrdev(DRIVER MAJOR, _
"io", &fops) Character-Device

return 0;
} /dev/i00 c 241 1

void exit TI0 #£x7t(){

unregister chrdev(...); .
) Command Line

rmmod io sch9520

rmmod calls 10O_exit

Figure 26: The connection between kernel module and application.

synertronixx Page 29/44 17.01.11

L27058Tan
‘1)‘00101010OQ1\§

7401101010010135

701101101101010113y,

£1011111010111010101

EVB9520 Getting Started YN

"1910110101001011002
1011011010101

\) 0
110001110105
2001010100927

S1010027

The modules should provide the features of the VFD and the 10s (switches and LEDs).
The address of the memory PXA_CS3_PHYS is defined in the header
asm/arch/scb9520.h. To access their functions the well known Linux calls open, close,
write, read and joctl are implemented.

4.2 The I/O module

Developing modules for the Linux kernel follows every time the same procedure. The 5
most important calls are open, close, read, write and ioctl.

The names of these calls will be connected to functions which must be developed. The
connection will be generated with a structure of type struct file operations, see listing 2.
The names of the functions are not important, but if you want to have well readable code,
use self explaining names, like the names you can see below.

® |OOpen
® |OClose
® |ORead
® |OWrite
® [Oloctl

struct file operations {
struct module *owner;

ssize t (*read) (struct file *, char user *, size t,
loff t *);
ssize t (*write) (struct file *, const char user ¥*,

size t, loff t *);
int (*ioctl) (struct inode *, struct file ¥*,
unsigned int, unsigned long);
int (*open) (struct inode *, struct file *);
int (*release) (struct inode *, struct file *);

i

Listing 2: Some elements of the structure struct file_operations.

In listing 2 you just see a part of this structure. The components we don't need here are
not mentioned.

The assignment of the /OOpen() function to the open call is done by the addresses of the
functions, see listing 3. The other calls will be connected to the other functions in the same
way.

The assignment from the macro THIS_MODULE to the owner call is done for security. If
this assignment has been done, the module cannot be unloaded during it is used.

synertronixx Page 30/44 17.01.11

L27058Tan
‘1)‘00101010OQ1\§

7401101010010135

701101101101010113y,

£1011111010111010101

EVB9520 Getting Started

"910110101001011002
1011011010101

\) 0
110001110105
2001010100927

S1010027

static struct file operations fops = {
.owner = THIS MODULE,
.loctl = IOIoctl,
.open = I0Open,
.write = IOWrite,
.read = IORead,
.release = IO0OClose,

}s

Listing 3: The assignment of the functions to the structure fops.

To connect the hardware (kernel module) with the software (application), you need a
device file. In this case we create a character device with the following command.

mknod /dev/io0 c 242 1
The parameter c¢ creates a character device with major number 242 and the minor number

1. The major number binds the module to this file. This number with this minor number is
unique in the whole system.

module init(IOinit);
module exit(IOexit);
static int _ init IOinit(void)

{
CS3 mem = ioremap(PXA CS3 PHYS, 0x2);
if(register chrdev(DRIVER MAJOR, "io", &fops) != 0){
printk("register chrdev failed\n");
return -EIO;
}
io infos.amount leds=8;
io_infos.amount switches=8;
return 0;
}
static void exit IOexit(void)
{
unregister chrdev(DRIVER MAJOR,"io");
iounmap (CS3 mem);
}

module init(IOinit);
module exit(IOexit);

Listing 4: The functions to load and unload the module.

In listing 4 you can see one way to load and unload this module. The command insmod
io_scbh9520.ko calls the function /OInit(). register_chrdev() registers the module with its
major number to the kernel. The function ioremap() allocates some memory.

synertronixx Page 31/44 17.01.11

- 1000113y N
ﬂ/zfl,g_u:»l01009\:\Q
7701010100101y,

,,;}’21 101101 10101onf§‘\\
£1011111010111010101y

EVB9520 Getting Started

"910110101001011002
1011011010101

W111000111020%
*0810101009%

®1010027

To unload this module use rmmod io_scb9520. Now the function unregister _chrdev()
unregisters the module and iounmap() frees the allocated memory.

static int
IOOpen (struct inode *io device, struct file *instance)

{

return O;

Listing 5: Die I0OOpen-Funktion.

In Listing 5 you can see the dialogue for the open call. The parameters are struct inode
*io_device and struct file *instance. The first one contains all elements, which defines the
device file, e.g. owner and access rights. The second parameter allows to control the
mode you access the device, reading, writing or both. In this function you can handle the
access mode, but this is not used in this example.

static int
IOClose(struct inode *io device, struct file *instance)

{

return O;

}
Listing 6: The IOClose function.

In Listing 6 you can see the /OClose function.

static int

IOWrite(struct file *file, const char user *user,\
size t cnt, loff t *offset)

{

int ret val = 0;

struct IOInOut io in out;

if (copy from user(&io in out, user, cnt) !=0) {
printk ("Too much for 8 LEDs...\n");
ret val = -1;

}
writeb(1o in out.leds, CS3 mem);
return ret val;

Listing 7: The IOWrite function.

In Listing 7 you can see how to set the LEDs. The function copy from_user() is used to
copy data from user space to kernel space. The parameters of the function are the
address of the source variable and the address from the destination variable. The last one

synertronixx Page 32/44 17.01.11

L2206033a
Iﬂfl’gglol 0100Q1\‘\\
7701010100101y,

,,;}’21 101101 10101onf§‘\\
£1011111010111010101y

EVB9520 Getting Started

"910110101001011002
1011011010101

W111000111020%
*2010101009%

®1010027

is the amount of bytes to copy. The function returns the amount of bytes, who still need to
be copied. If everything could be copied, it returns 0. writeb() writes one byte to the
address, given as second parameter. The first parameter is the value to be copied.

static int
IORead(struct file *file, char user *user, size t cnt,\
loff t *offset)
{
int ret val = 0;
struct IOInOut io in out;
io_in out.switches=readw (CS3 mem) ;

if (copy to user(user, &io in out, cnt) !=0) {
printk ("Too much for 8 switches...\n");
ret val = -1;

}

return ret val;

Listing 8: The IORead function.

You can see the /ORead() function in listing 8. In this function one byte will be read from
the address CS3_mem. With the copy to user() function the byte is copied from kernel
space into user space. The parameters from copy_to_user() are the address out from user
space, the address from kernel space and the amount of bytes to copy. This function also
gives back the missing bytes. If all could be copied, 0 will be returned.

static int
IOIoctl(struct inode *io device, struct file *instance,\
unsigned int cmd, unsigned long arg)

{

int ret val;
switch (cmd) {
case IO GET INFOS:

copy to user((void*)arg, &io infos, \

sizeof (io_infos));
ret val = 1;
break;
default:
printk ("IO ioctl command not known\n");
ret val = -1;

}

return ret val;

Listing 9: The IOloctl function.

synertronixx Page 33/44 17.01.11

1111111111

bglOlOlOogl\
0110101001011Q
101101101 1010101]_1\

- :50101111101 01110100101@
EVB9520 Getting Started

‘?11011011010101111

M111000111010%°
™ “2010101009% o7

0101001”

To implement simple commands you can use ioctl(). To do such things, you just give a
special parameter to the call and in the Jjoct/() function it will be analysed. The special
parameters are just simple defines out of the header io_scb9520.h. In listing 9 you can
see a short example.

4.2.1 The VFD modul

As already mentioned all modules are quite similar, so the vfd_scb9520 module also looks
quite similar as the io_scb9520 module. This module controls the VFD module. It also
uses the functions register_chrdev() and unregister_chrdev() for this. One additional
function is the VFDFirstInit(), which initializes the module and sets settings to the VFD.
The bytes we send to it, are given in the listing 10 below. The meaning of these keywords
can be read in the data sheet.

static void
WaitPBusy (void)

{
while (readb (CS3 mem+2) &0x80) ;
udelay (10);

}

Listing 10: The function WaitPBusy/() waits for a successful completion of the command.

When you write commands or data to the display, you must be sure, that the command is
already completed before you can write the next command or data to it. For this you can
check the PBusy bit. If this becomes 0, the command is completed. Unfortunately the
SCB9520 is too fast and so we must wait with the delay function.

Normally you try to prevent waiting with delay or sleep, because it is so called active
waiting.

4.2.2 The I2C bus

The Linux kernel provides a generic I?°C bus kernel module to handle I?C devices. You can
access the devices which are used in this application with the well known commands like
open, close, read, write and ioctl.

For further information please refer to Philips and their specifications.
4.3 The application

4.3.1 A description of the application

This application is a demonstration to give a little help into driver and application
development under Linux. The application evb9520 consists of several C and header files.
A short list of the files is given below.

® evb9520.c

synertronixx Page 34/44 17.01.11

111111111111

011010100101“1Q
10110110110101011n
- ,1010111110101110%0101%
7 e e /!
EVB9520 Getting Started
%11011011010101ﬂ1
\311100011101%,
2101020007
® ads.c/h
® clock.c/h
® io.c/h
® serial_comA2.c/h
® serial_com0O.c/h
® server.c/h
® terminal.c/h
e vfd.c/h

With the buttons you can control the board. With S8 you increment the menu and with S7
you can decrement the menu. In menu 0 you can read the time on the VFD, in menu 1 you
can read the current analogue value and on menu 2 and 3 you can read the input from
/dev/ttySA2 and /dev/ttySO.

{Check button}————:

=TI
(Set menu]

User

>
O
@)

Yy

(Set LEDs| e

Figure 27: Controlling the board with the buttons.

On the figure 27 above you can see a controlling sequence. With the buttons the menu is
set.

Another way to control the board is the TCP/IP protocol. For this you need a MS Windows
PC equipped with the application DeviLANControl. To establish the connection, please
have a look some chapters before.

synertronixx Page 35/44 17.01.11

111111111111

Iﬂl’gglol 01000y S
7701010100101y,

/01101101101010113,

EVBQSZO G tt. St t d :31011111001110%001‘?
etting otarte b redentnd

0110110101012

/-
\.}\‘«111000111010%
“2010101009%

S1010027

--{read String -

User on
Windows-PC

Figure 28: Controlling the board with TCP/IP.

The main routine first opens the following devices vfd0, i2c0, io0, ttyS0 and ttySAZ2. If one
device could not be opened the application breaks. The serial devices are set to none
blocking.

In figure 29 you can see an overview of the routine main(). In this function a do while loop
runs until the variable running becomes 0. With /OSetLeds() the LEDs will be set. On
hitting one button the function SetMenu() will be called. The select() function watches the
TCP/IP messages. If there is one network message, the routine ServerGetMsg() will be
called and will give it to the DataHandler() function, which analyses the received
messages.

synertronixx Page 36/44 17.01.11

111111111111

01101010010{1Q
101101101 1010101]_1\
mm11110101110;pmmY

EVB9520 Getting Started ainenbuomisy

‘?11011011010101111

M111000111010%°
N ““101010001 o7

hxo:looz”

ServerGetMsg DataHandler

Keyboard

I0GetSwitches

IOSetLeds

In Figure 30 you can see the SetMenu() function. These function creates the menu, which
you see on the VFD.

Figure 29: The main routine.

® Menu O : Time.

® Menu 1 : Analogue value.
® MenuU 2 : Input from ttySA2.
® Menu 3 : Input from ttySO.
® Menu 4-9 : Free for use.

synertronixx Page 37/44 17.01.11

111111111111

011010100101“_Q
101101101 101010111\
mm11110101110;pmmY

EVB9520 Getting Started ARl

‘§1101101101o101111

M111000111010%°
N ““101010001 o7

hxo:looz”

M41T00Get
TimeString

ADS1110
ReadString

COMA2Read

COMORead

Figure 30: The SetMenu routine.

In figure 31 the DataHandler() is explained. The ServerGetMsg() reads the TCP stream
until EOL (End Of Line). After that, it calls the DataHandler(), which analyses the string
with the help of the strstr() routine.

synertronixx Page 38/44 17.01.11

111111111111

01101010010{XQ
101101101 1010101]_1\
zlilllOlOllloypmmY

EVB9520 Getting Started YNOIONL

‘?11011011010101111

M111000111010%°
™ “2010101009% o7

0101001”

ADS1110
GetGain

ADS1110Set
Gain

ADS1110
SetBaudrate

ADS1110
GetBaudrate

DataHandler

ServerGetMsg

M41T00Get
TimeString

ServerSendMsg

Figure 31: The DataHandler routine.

4.3.2 The buttons and LEDs

The buttons and LEDs are accessed with the help of the io0 device. This device is created
at boot up. These 10s can be read and written. For this you also use the commands open,
close, write, read and ioctl.

You can read out every pushed button and set the LEDs. The function ToggleBit() helps
you to invert the current state of one LED.

4.3.3 The real time clock

The RTC (real time clock) is implemented with the 1°C bus. Communication over [°C
follows everytime the same procedure. There are two communication partners. One is the
master and the other is the slave. On every communication the SCB9520 is the master
and the RTC or the ADC is the slave.

The first step is to open the i2c0 device with the help of the open call. In the next line you
see the command to set the RTC to slave.

ioctl (fd clock, I2C SLAVE FORCE, 0x68)
fd_clock is the file descriptor which shows to the I2C device, I2C_SLAVE_FORCE is an
ioctl command out of the generic Linux driver. The 0x68 or 68H is the address of the real

synertronixx Page 39/44 17.01.11

25510101033§§
7401101010010135
;0”1101101101 1010101]_1{\‘

£1011111010111010101

EVB9520 Getting Started

"910110101001011002
1011011010101

\ /-
110001110105
2001010100927

S1010027

time clock.

Then you read from the device or write something to it. Everytime you read or write to the
device, you read or write 8 bytes. To convert the numbers from decimal to BCD or back,
you can use the routines DecToBcd() and BcdToDec(). Before you use these functions you
have to mask the not needed bits. Please have look at the source code or the data sheet
for those bits.

You must write to the RTC at least once, before you read the first time from it.

4.3.4 The analogue digital converter

The analogue digital converter (ADC) measures the differential voltage which applies to its
input pins VIN- and VIN+. We access the ADC also over the I12C bus. Its address is 4AH.
Like the RTC first you have to open the device and set it to slave.

ioctl (fd ads1110, I2C SLAVE FORCE, 0x4A)
Referring to the data sheet, you have to read three bytes and you can write one byte to it.
The first two bytes contain the data and the last the settings. The settings mainly consist

of the baud rate and the gain. The configuration for continuous or single mode is set once
in the beginning of the application.

int config reg(4][2]={{2048,1}, {8192,2}, {16384,4},{32768,8}};
To identify the gain or the baud rate, the array above is used. The first part of the array is
the mincode and the second part is the gain.

First we mask the gain bits and read out the gain with help of the array above. Secondly
we mask the baud rate bits, shift them twice left and use also the array above to get the
baud rate value.

Below you can see a little example how to mask the right bits.

gain = configure reg[buf[2]&0x03][0];
baudrate = configure reg[(buf[2]&0x0C>>2)][1];

4.3.5 The VFD module

If you want to use the VFD, you have to load the module vfd_scb9520.ko.

To access the display you can use the usually used calls like open, close, read, write und
ioctl. The ioctl command offers several functions, see table 6.

synertronixx Page 40/44 17.01.11

111111111111

01101010010{XQ
101101101 1010101]_1\
mm11110101110;pmmY

EVB9520 Getting Started ARl

‘?11011011010101111

M111000111010%°
™ “2010101009% o7

0101001”

command function
VFD_GET_INFO return the manufacturer and name of the display
VFD_OFF turn display off

VFD_SET CURSOR LINE1 POS1 set cursor to line 1 position 1
VFD_SET _CURSOR_LINE2 POS1 set cursor to line 2 position 1

VFD_CLEAR_DISPLAY clear the display
VFD_GO_XY set cursor to position X Y
VFD_CLEAR_LINE_1 clear line 1
VFD_CLEAR_LINE_2 clear line 2

Table 6: ioctl commands for the display.

Almost every command gets a NULL as third parameter. Just the commands VFD_GO_XY
and VFD_GET_INFO get an address to copy some data from or to kernel space.

4.3.6 Communication with TCP sockets

During the application evb9520 is running, one socket is open and searches for an
incoming connection from another application like DeviLANControl. If a connection could
be set up, the routine ServerConnect() starts and opens a server socket to look for the port
in the file /etc/network/interfaces. If there is no port entry, it uses the default port 3333 and
writes this one to the file interfaces. The server socket is started with the option
SO_REUSEADDR, so the port can be used immediately after disconnecting. Usually, a
used port is locked for about two minutes after disconnecting, but in this case, this security
feature is not needed.

TCP connections don't loose data like UDP connections. But if the data can be divided into
two or more pieces, this depends on traffic and frame size. Because of this, the routine
ServerGetMsg() reads until an end of line (EOL, ODH) could be found in the string. If one
could be found, the function DataHandler() is called and searches for special keywords in
the string.

All keywords are listed in table 7.

synertronixx Page 41/44 17.01.11

25510101033§§
7401101010010135
;0”1101101101 1010101]_1{\‘

£1011111010111010101
SYRCAISUOIIS"
1910110101001011002

1011011010101

\ /-
110001110105
2001010100927

S1010027

EVB9520 Getting Started

Table 7: keywords for socket communication.

keyword parameter description

get_config none sends the name of the module, the state of the LEDs
and switches, the time, the gain and the baud rate
and the analogue value from the ADC

data_renew none sends the current state of the switches, ADC and the
time

porta leds sets the LEDs to the value of the variable leds

adc_baudrate

ads1110_sps

set the baud rate

adc_gain ads1110_gain |sets the gain
time time (s.u.) sets the time
mode menu set the menu

The value for the variable leds must be between 0 and 255 and it has to be sent in
hexadecimal. The baud rate can be 15, 30, 60 or 240, the gain must be 1, 2, 4 or 8. The
variable menu has a range from 0 to 9, but just 0 to 3 has a function and the rest is free for
use. The string to set the time must look like this: 23:12:59 Tue, 31.12.2099

Please beware of case sensitivity.

Here are some examples of how to use the keywords.

get configure
data renew
adc_baudrate 240
adc_gain 2

time 23:12:59 Tue,
mode 1

31.12.2099

4.4 The rc script

At boot up the script S99scb9520 is executed. You can find this script in the directory
/etc/init.d. The rules for the names are quite simple. The name must start with a capital 's’,
then there must be a number and then a random string may follow. The number decides
the order in which the scripts will be executed. Our script got number 99, so we can be
sure, that it is the last one to be executed.

If you run the script with the parameter 'start', it loads the modules 8250, i2c_pxa, i2c_dev,
vfd_scb9520 and io_scb9520. It creates the device characters and starts the applications
udp_config and evb9520 in the background. To stop the applications, use the following
commands.

synertronixx Page 42/44 17.01.11

EVB9520 Getting Started

Pttt
/0110101001011Q
1M1011011010101UA

1010111 1101 01110100101w
3 RS HONUPY
101101010010110011

‘311011011010101111

N1y 0!
100011101
N\
™ “°l01o10001”ﬂ/

killall udp config
killall evb9520

#!/bin/sh

if ["SVERBOSE" != no]

then
echo -n "Initializing EVB9520... "
e(:klo mw

fi

case "S$1" in

start|"starting all modules and apps")
if [
then
echo /dev/io0 missing,
/root/io.sh
else
echo /dev/io0 already exists,
fi
if [
then
echo /dev/vfd0 missing,
/root/vfd.sh
else
echo /dev/vfd0 already exists,
fi
if [
then
echo /dev/ttyS0O missing,
/root/serial.sh
else
echo /dev/ttyS0O already exists,
fi
modprobe i2c-dev
modprobe i2c-pxa
modprobe 8250

‘1s -1 /dev/i1i00 2>/dev/null|wc -11"

‘1s -1 /dev/v£fd0 2>/dev/null|wc -1"

0101091”

-eq 0]

starting io.sh to create it

so nothing has to be done

-eq 0]

starting vfd.sh to create it

so nothing has to be done
‘1s -1 /dev/ttyS0 2>/dev/null|wc -1 -eq 0]

starting serial.sh to create it

so nothing has to be done

synertronixx Page 43/44

17.01.11

L27058Tan
‘1’00101 010004}
(ﬂ;;’},llololooloﬁ&\
701101101101010113y,

£1011111010111010101

EVB9520 Getting Started

"910110101001011002
1011011010101

W111000111020%
*2010101009%

®1010027

insmod /root/modules/io scb9520.ko 2>/dev/null
insmod /root/modules/vfd scb9520.ko 2>/dev/null
/usr/local/bin/udp configure &
/usr/local/bin/evb9520 &
stop)
echo "stopping all modules"
killall evb9520 2>/dev/null
killall udp configure 2>/dev/null
rmmod i2c-dev 2>/dev/null
rmmod i2c-pxa 2>/dev/null
rmmod /root/modules/io scb9520.ko 2>/dev/null
rmmod /root/modules/vfd scb9520.ko 2>/dev/null
echo "removing all files"
rm /dev/io0 2>/dev/null
rm /dev/vfd0 2>/dev/null
4
echo "Usage:599scb9520 {start|stop}" >&2
exit 1
esac
Listing 11: The rc-script

The script in listing 11 first checks, if the files /dev/io0, /dev/vfd0 and /dev/ttyS0O exist and, if
not, creates them.

With the parameter 'stop' it unloads all modules with the help of rmmod and stops the
applications with the command killall. killall quits applications depending on their names
and not on their PID (process identifier).

To quit applications with killall use this command like this:

killall evb9520

killall udp configure

To create the files, there are several little shell scripts to execute. For creating the io0 file
execute io.sh and so on. All these files are quite similar, they just create the file with the
command mknod. Look one line below for a simple example.

mknod /dev/vfd0 c $IO_MAJOR $IO_MINOR

synertronixx Page 44/44 17.01.11

	 1 Getting Started
	 1.1 Set up the Evaluation Board
	 1.2 Using the serial interface (Linux)
	 1.3 Using the serial interface (MS Windows)
	 1.4 Compiling applications for the EVB9520
	 1.4.1 Compiling "Hello World!"
	 1.4.2 Compiling the example evb9520

	 2 Controlling the application
	 2.1 Using buttons to control
	 2.2 Controlling with the help of DeviLANControl

	 3 The hardware
	 3.1 The structure
	 3.2 The real time clock
	 3.3 The analogue digital converter
	 3.4 The VFD Display
	 3.5 The interfaces

	 4 The software
	 4.1 The kernel
	 4.2 The I/O module
	 4.2.1 The VFD modul
	 4.2.2 The I²C bus

	 4.3 The application
	 4.3.1 A description of the application
	 4.3.2 The buttons and LEDs
	 4.3.3 The real time clock
	 4.3.4 The analogue digital converter
	 4.3.5 The VFD module
	 4.3.6 Communication with TCP sockets

	 4.4 The rc script

