
EVB9520
Getting Started

Table of Contents
 1 Getting Started..3

 1.1 Set up the Evaluation Board..3
 1.2 Using the serial interface (Linux)...3
 1.3 Using the serial interface (MS Windows)..6
 1.4 Compiling applications for the EVB9520...8

 1.4.1 Compiling "Hello World!"..8
 1.4.2 Compiling the example evb9520..10

 2 Controlling the application...11
 2.1 Using buttons to control...11
 2.2 Controlling with the help of DeviLANControl...11

 3 The hardware..18
 3.1 The structure..19
 3.2 The real time clock...22
 3.3 The analogue digital converter..23
 3.4 The VFD Display..25
 3.5 The interfaces..27

 4 The software...28
 4.1 The kernel..28
 4.2 The I/O module..30

 4.2.1 The VFD modul..34
 4.2.2 The I²C bus...34

 4.3 The application..34
 4.3.1 A description of the application..34
 4.3.2 The buttons and LEDs..39
 4.3.3 The real time clock...39
 4.3.4 The analogue digital converter...40
 4.3.5 The VFD module..40
 4.3.6 Communication with TCP sockets...41

 4.4 The rc script...42

synertronixx Page 2/44 17.01.11

EVB9520 Getting Started

 1 Getting Started

 1.1 Set up the Evaluation Board
To put the evaluation board in operation, you have to connect it to a power supply (DC 10V
– 30V). To communicate and to control the board, you should connect it with a null modem
cable to a PC. Controlling the board is also possible with a network connect EVB9520 on.
For the serial connection, you use the COM port on your PC, the debug port on the
EVB9520 and a terminal application like tera term, hyperterminal and on Linux you can
use kermit or minicom.

If you want to control the board with a MS Windows PC, you can also use the application
DeviLANControl.

The steps in detail:

1. Connect the board with a null modem cable with the PC.

2. Start a terminal application with the following settings: 115,2kBaud, 8 data bit, 1
stop bit and no parity.

3. Now you connect the EVB9520 (without the SCB9520) to the power supply. The
PWR-Diode should light. The state of the 8 LEDs is not defined in this case, but in
most cases they also light.

4. Now switch off the power supply.

5. If the steps before worked fine, you can go on with this and the next steps. Now
mount the SCB9520 carefully on the DIL64 interface. Please note, that it is
positioned in the right way. The transformer must be as near as possible to the
RJ45 Ethernet interface.

6. Now switch on the power supply again. The LEDs RxD and TxD should flash and
the 8 LEDs should light continuously.

The applications udp_config and evb9520 start automatically in the background and now
you can read the time on the display. Perhaps the time you see is wrong.

A detailed introduction for using the serial interface with Linux or MS Windows is given in
the chapters below.

 1.2 Using the serial interface (Linux)
To control the EVB9520 you can use a terminal program on a Linux PC. After starting the
board you have to login with the below given username and password. In picture 8 you
can see a screenshot.

username : root
password : pass
Please note, Linux is case sensitive and you must distinguish between upper case and
lower case characters. There are several terminal application for Linux available, well

synertronixx Page 3/44 17.01.11

EVB9520 Getting Started

known are minicom and kermit.

Figure 1: Login with a terminal on a Linux PC.
In screenshot 2 you can see the output you get after a successful login. The commands ls
(list segment), pwd (print working directory) and cd (change directory) can help you to
have a look at the embedded Linux system and it's file system.

Figure 2: The login succeed.
It's time to configure the network interface. In figure 3 you see the file
/etc/network/interfaces. It is opened with the editor nano, the editor vi also exists on the
system.

The entries of this file are maybe not the same, especially “modulname””, “serial”, “tcpport”
and “udpport” can vary or even doesn't exist. These entries are made with the application
udp_config. These entries does not affect the use of the Linux system, they are only used
by the application evb9520.

synertronixx Page 4/44 17.01.11

EVB9520 Getting Started

Figure 3: Changing the IP with nano.
By default, the IP address is set to 192.168.1.199. If you want to change it or something
else, do it here.

To finish the configuration and use the new entries, use the following commands on the
command line.

ifdown eth0
ifup eth0
The first command stops the network device and the second starts them again. The output
of these commands are shown on the figure 9 below.

Figure 4: Restart the network.
To test the new configuration, you can use the command ping. A possible way to use ping
is shown in figure 5.

A good strategy to test the network is, first ping your own IP and if that works, ping another
member in your network. In the figure 5 you see some additional parameters, the first one
is c and the second is 4. With this parameters you only send 4 ping's instead of pinging
continuously. The last parameter is the IP address you want to ping.

synertronixx Page 5/44 17.01.11

EVB9520 Getting Started

Figure 5: Checking the network configuration ping.

 1.3 Using the serial interface (MS Windows)
It is also possible to communicate with MS Windows and a terminal application with the
EVB9520.

First of all you have to start the terminal application. In this document we are using the
hyperterminal. The first step is to give the new connection a name, as shown in figure 6.
Click on OK to pass this step.

Figure 6: The name of the new connection.
The next window you will see is shown in figure 7. Here you choose the right COM port
and also pass it with OK.

synertronixx Page 6/44 17.01.11

EVB9520 Getting Started

Figure 7: Choosing the right COM port.
In figure 1 you see the settings from the chosen COM port. In Table 1 are the needed
settings shown.

Figure 8: Settings of the serial connection.

synertronixx Page 7/44 17.01.11

EVB9520 Getting Started

Table 1: The parameters for the COM port.

Bits pro Sekunde 115200

Datenbits 8

Parität keine

Stoppbits 1

Flusssteuerung Xon/Xoff

In figure 4 is the output on the hypertermnal after boot up shown. The username and the
password is the same as already mentioned in chapter 1.3.

username : root
password : pass
The configuration of the IP address is also the same like in chapter 1.3.

Figure 9: The output of the Hyperterminal.

 1.4 Compiling applications for the EVB9520

 1.4.1 Compiling "Hello World!"

For compiling applications for the EVB9520 you need a PC equipped with Linux. You

synertronixx Page 8/44 17.01.11

EVB9520 Getting Started

always compile on the PC with the cross compiler and then you copy it to the board. The
cross compiler can be found on the provided CD.

First extract the compiler and set it up for using. Below you can see the commands. With
mount we can use the content of the CD. Some Distributions mount CDs, pen drives and
so on automatically. If you use one of these Distributions, you don't need the first and the
last command.

mount /mnt/cdrom
cd /
tar xjf /mnt/cdrom/home/software/arm-linux-gcc-4.1.2.tar.bz2
umount -l /mnt/cdrom
The command tar extracts the archive into /usr/local/arm. If this path doesn't exist, it will be
automatically created. To use the compiler, we have to extend the PATH variable. To do
this, we will use the command export as shown in the next line.

export PATH=$PATH:/usr/local/arm/arm-linux-gcc-4.1.2/bin
The PATH contains all paths to directories with executable binaries or shell scripts. If you
don't want to execute this command after every boot up, you should add this command
into the /etc/profile.

Again, the compiler will be used on the PC and not on the EVB9520! All these operations
you see above, must be done on your development PC and this one must be equipped
with Linux.

In listing 1 you can see the source code of "Hello World!".

#include <stdio.h>

int main (void)
{
 printf("Hello World!\n");

 return 0;
}

Listing 1: The application "Hello World!"

Use the next command and its parameters to compile:

arm-linux-gcc -o hello -Wall hello.c
The parameters -o hello sets the name for the created binary, if you wouldn't set it, the
default name “a.out” would be used, which is not very useful. The option -Wall shows more
warnings than the default. For good programming you should prevent every warning. The
last parameter is the file to compile.

After successful compiling you can copy the binary to the EVB9520, this can be done with
ftp or scp. The file has to be copied to the directory /usr/local/bin. An example for copying
with scp is given below.

scp hello root@192.168.1.199:/usr/local/bin

synertronixx Page 9/44 17.01.11

EVB9520 Getting Started

If you copy this file the first time, you have to change its rights and permissions with the
chmod command. After that, you can execute it on the command line. For this, see the
next figure 10.

Figure 10: Using chmod and execute "Hello World".

 1.4.2 Compiling the example evb9520

On the provided CD you get the source code of one example application. This code can be
used for your first applications. To compile it, you can use the following command.

make -f evb9520.mak rebuild
Note, this compiling also has to be done on a Linux PC and not on the EVB9520 itself.

On the CD there is also provided the project file evb9520.vpj. If you already have the editor
slickedit you can use this file for comfortable use.

To copy this file also to /usr/local/bin just follow the hints we gave you in chapter 1.3.
Executing this application is done with the following command:

evb9520

synertronixx Page 10/44 17.01.11

EVB9520 Getting Started

 2 Controlling the application

 2.1 Using buttons to control
The application start with the following command.

evb9520
After connecting the EVB9520 to the power supply, the application evb9520 starts in
background. The typical behaviour is, all LEDs are lightning and on pushing one button the
LED stops lightning until the button is not pushed. The first two buttons can be used to
navigate through the menu.

The available points in the menu are:

● Displaying the current time.

● Displaying the current voltage.

● Displaying the input on the device ttySA2.

● Displaying the input on the device ttyS0.

An output on the the screen is not available, because printf outputs are quite heavy for the
controller. You can also control the board with the help of ssh. First you login into the
board, an example command is shown below.

ssh root@192.168.1.199

 2.2 Controlling with the help of DeviLANControl
First you must supply the EVB9520 with power (DC 10V – 30V). Then connect it with a null
modem cable to the PC. You have to use the debug interface for this connection. To login,
start a terminal application. On figure 11 you can see an example session.

Figure 11: The login prompt

synertronixx Page 11/44 17.01.11

EVB9520 Getting Started

Some features of the EVB9520 can be controlled with a remote PC equipped with MS
Windows. For this, we need to start the application udp_config with the following command
on the board:

udp_config
If you don't change any settings in the boot up scripts, udp_config is already running on
the board and you can skip this step.

The screenshot 12 after boot up.

Figure 12: The application udp_config
Now please start DeviLANControl on you MS Windows PC like you can see in figure 13.
Here you can see the tab „Verbindungsmanager“. In this tab you can see all active boards
in your network. Perhaps you have to change the setting „UDP-Meldung senden an“ to
„IP2002/SCB9328 (Port: 80)“. If you cannot see the board, try clicking the button „suchen“.

synertronixx Page 12/44 17.01.11

EVB9520 Getting Started

Figure 13: The application DeviLANControl.
In figure 14 you can see the output from evb9520. This application doesn't give messages
to the stdout, you just get some messages if errors occur.

synertronixx Page 13/44 17.01.11

EVB9520 Getting Started

Figure 14: The output of the application evb9520.
In figure 15 you can see the DeviLANControl. In this picture you can see, that
DeviLANControl found one board. Now you can connect to it with the button "Verbindung".

Every possible communication partner you see in DeviLANControl is expandable. In
expanded view you can see some further information like the IP address, the used port,
the net mask and the MAC address.

A short information to udp_config:

To identify or configure several running SCB9520 and EVB9520 in your local area network
(LAN) you can use the application udp_config. For communication there is a command
interpreter implemented. It reacts on UDP broadcast messages and answers with the
current TCP/IP settings. Over UDP you can set the basic network settings. For this the
file /etc/network/interfaces will be modified. It contains the network settings. For safety the
old file will be saved as interfaces.pre_udpsocket.

To configure one board you can use DeviLANControl. An example session to configure the
network settings is given below.

● Choose the board you want to control in the tree.

● Activate “Konfiguration über UDP” (now, automatically the data from the board gets
copied to the input field).

● Activate “UPD-Meldung senden an (Port 8002)”.

● Change or edit the settings you want to.

● Confirm the settings by hitting the button “Set”.

● The new settings will be used after rebooting the board.

synertronixx Page 14/44 17.01.11

EVB9520 Getting Started

Figure 15: DeviLANControl after connecting with the
application udp_config.

After successful login, the string “modul typ 9520” is sent to the board. If the EVB9520
receives this string, it creates a new tab with the name "EVB9520" (see figure 16).

The new tab contains some controlling elements. Under "Port A" you can see the state of
the LEDs and under "Port B" you can see the state of the switches. In the middle of the
widget you can see the current analogue value in the "ADC" section (dimension is mV). In
this area you can also set the current baud rate and gain.

Below the "ADC" section is the "time" area. You can see the current time in it and even set
it. You must have a look at the string to set the time, it must be exactly the same as shown

synertronixx Page 15/44 17.01.11

EVB9520 Getting Started

in the widget.

In the "Modus" section you can control the output of the display.

Figure 16: The new register "EVB9520".
If you send the string “data_renew” to the board, the current state of the LEDs and
switches, the analogue value and the time will be updated. One example is shown in the
figure 17.

DeviLANControl updates specific values in dependency to the current mode. If it runs in
time mode, the time is always correct. If it is in ADC mode, the value shown in
DeviLANControl is refreshed several times per second.

synertronixx Page 16/44 17.01.11

EVB9520 Getting Started

Figure 17: The command data_renew.

synertronixx Page 17/44 17.01.11

EVB9520 Getting Started

 3 The hardware
The Evaluation Board EVB9520 is an example application to show you the features of the
SCB9520.

Some characteristics of the board:

7. 10 / 100 MBit Fast-Ethernet Interface.

8. USB Device Interface (USB Low- and Full-Speed Support).

9. USB Host-Interface.

10.16-Bit A/D converter.

11. 3 serial RS232 interface.

12. I²C-Interface (max. 2 MHz).

13.8 digital inputs and outputs (switches / LEDs).

14.Gold cap buffered real time clock.

15.VFD Display.

16.power supply 8 - 30V DC.

17.1 carrier for the SCB9520.

The figure 18 shows the position of the most interfaces.

You can find current information like the schematic EVB9520 on the homepage of the
company synertronixx.

synertronixx Page 18/44 17.01.11

EVB9520 Getting Started

Figure 18: The structure of the Evaluation Board.

 3.1 The structure
The real time clock and the ADC are connected to the I²C bus. In order to control or read
these parts you have to use their addresses, which stands in their data sheets.

The LEDs and switches are both connected to the same data bus. With the help of the
address decoder (shown in figure 19) you can choose to control the VFD, the switches or
the LEDs. If the /CS3 is low and A16 and A17 too, the /CS_541 on the decoder output also
becomes low.

synertronixx Page 19/44 17.01.11

EVB9520 Getting Started

Figure 19: The address decoder.
The /CS_541 leads to another address decoder (see figure 20). This decoder is connected
to /RD and /CS3. If /WR, /CS_541 and /CS3 is low, /CS541_WR* becomes low and the
LEDs will be set according to the bus shown in figure 21.

Figure 20: The Differentiation between reading and writing.
To read out the switches /CS_541 and /WR must be low (please have a look at figure 21).
The state of /CS_541 can be set by software and the states of /RD and /WR are changing
continuously and oppositional, which is implemented in the PXA 270.

synertronixx Page 20/44 17.01.11

EVB9520 Getting Started

Figure 21: The switches and LEDs.

synertronixx Page 21/44 17.01.11

EVB9520 Getting Started

 3.2 The real time clock
The M41T00 uses less current (about 0.3 mA). Please refer to the data sheet for further
information. The real time clock can be supplied by the on board gold cap. If the main
power supply is not connected, this cap can supply it for up to one week. The RTC offers
the century, the year, the month, the hour, the minute, the second and the name of the
week day. All is decoded in BCD numbers.

The wiring of the M41T00 is given in the figure 22.

Figure 22: The wiring of the M41T00.
To control or read the M41T00 the generic Linux I²C bus driver is used.

On reading or writing you always get or set an array of 8 bytes.

addres
s

data

D7 D6 D5 D4 D3 D2 D1 D0 function range

0 ST 10 sec second second 00-59

1 X 10 min minute minute 00-59

2 CEB CB 10 hour hour year/our 0-1/00-23

3 X X X X X day day 1-7

4 X X 10 date date date 1-31

5 X X X X month month 1-12

6 10 year year year 0-99

7 OUT FT S calibration control
Table 2: The register of the M41T00

In table 2 you can see the content of the register of the M41T00. The bits marked with an
X contain useless information. If the ST bit is set to one, the oscillator stops and if you set
it back to zero, it starts within a minute. If the CEB bit is set, you can recognize a new

synertronixx Page 22/44 17.01.11

EVB9520 Getting Started

century on checking the CB bit. If this bit toggles, another century has gone. The bits S, FT
and OUT are used for checking the oscillator, they are not used in this project.

All time information is coded in BCD. Use the following formulas to calculate to BCD or to
decimal numbers.

X10= X 1616 ⋅10X16mod10 (1)

X16= X 1010 ⋅16X10mod16 (2)

 3.3 The analogue digital converter
The ADC component ADS1110 requires a current of 0.24 mA. It has a resolution of 16 bit
and 4 adjustable steps for the baud rate and the gain. For more information, please refer
to the data sheet.

Figure 23: The ADC.
The device is connected to the I²C bus and can also be controlled with the help of the
generic Linux driver.

In Figure 23 you can see the schematic. The ADS1110 has an adjustable sample rate from
15, 30, 60 or 240Hz. The gain is adjustable, too. Here you can choose between 1, 2, 4 and
8. The higher gains are used for higher resolutions on lower voltages. The formula to
calculate the value on the input of the ADC considers the gain, so the result is always the
right one. The formula you should use, is given under 4.

There are three registers. Every register contains 8 bytes. The first two bytes are the data
bytes and the last one is the configuration byte.

synertronixx Page 23/44 17.01.11

EVB9520 Getting Started

The module can be read as often as you want to. If you read it faster than the new value is
written to the data registers, you just read the same value twice or even more often. A bit,
that shows you an ended conversion is not available.

Bit 7 6 5 4 3 2 1 0

Name ST 0 0 SC DR1 DR0 PGA1 PGA0

Table 3: The configuration register of the ADS1110.

In Table 3 you can see the configuration register. The seventh bit has no use for the
continuous mode. The fourth one must be zero for continuous mode. The bits 3 and 2 are
setting the baud rate and the bits 1 and 0 are setting the gain (see table 4 and 5).

DR1 DR0 data rate maxcode (max. resolution) mincode (min. resolution)

0 0 240SPS 2047 2048

0 1 60SPS 8191 8192

1 0 30SPS 16383 16384

1 1 15SPS 32767 32768

Table 4: The bits to control the baud rate.

PGA1 PGA0 gain

0 0 1

0 1 2

1 0 4

1 1 8

Table 5: The bits to control the gain.

With formula 3 you can calculate the value on the ADC. To prevent float calculating you
can use the factor 1000.

U= data⋅2,048
gain⋅−mincode

 (3)

U= data⋅10
gain⋅−mincode

 (4)

The voltage divider has an proportion from 1 to 4,878 (see formula 7). For the right result
use the factor 10 and put it into the formula 4.

synertronixx Page 24/44 17.01.11

EVB9520 Getting Started

U=U0⋅
2050

2050⋅ 8k2⋅261k8k2261k  (5)

U=U0
2,05
10

 (6)

U= 1
4,878

 (7)

 3.4 The VFD Display
The on board display is a Vacuum Fluorescent Display (VFD). The VFD is connected to
the board with an 8 byte data bus. The power supply is 5V and this display offers 11
monospace and proportional fonts.

The schematic is shown in figure 24.

synertronixx Page 25/44 17.01.11

EVB9520 Getting Started

Figure 24: The VFD display.
To write some data to the display /CS_LCD and /WR must be low. /CS_LCD becomes
low, if /CS3 and A16 are low and A17 is high.

The VFD has a pin RS, but this cannot be used. On other displays, this bit is normally
used to differ between data and command words. Here you just send your commands or
data word by word to the display and everything works fine. For further information, please
refer to the data sheets.

synertronixx Page 26/44 17.01.11

EVB9520 Getting Started

 3.5 The interfaces
There are several available interfaces on the EVB9520. You can find the I²C bus, three
RS232, one Ethernet interface, one USB host and one USB device controller.

Two of the serial devices are internal. For the third external one you need the module
8250. You have to load it by yourself, e.g. with a rc-script at boot up.

For the I²C bus you must load the modules i2c_core, i2c_pxa and i2c_dev. The i2c_core
will be loaded by Linux automatically, but the others you must load by yourself.

synertronixx Page 27/44 17.01.11

EVB9520 Getting Started

 4 The software
The application evb9520 and its source code is an example to show the customer how to
program on an embedded Linux system. For this you need the toolchain buildroot to cross
compile for the EVB9520.

The EVB9520 is equipped with the application evb9520, which uses several features from
the board.

To develop you should connect the board like it is shown in figure 25. The board is
connected with a null modem cable to the development PC and it is connected to a router,
hub or switch to get network access. The development PC (Linux) is connected to the
network. Perhaps you also want to control the board with the MS Windows application
DeviLANControl. If yes, you need a Windows equipped PC, which is connected to
network, too. After you connect everything in the right way, you can communicate with it
with the help of a terminal program. For copying you can use scp or ftp.

Figure 25: The connection board, development PC and Remote PC.

 4.1 The kernel
The board is equipped with a Linux kernel 2.6.31 and Busybox. Busybox is a set of
applications, which provides a shell and tools like ls (list segments), cd (change directory)
and mkdir (make directory). It is often used on embedded systems, because of its little
size.

In figure 26 you can see an overview of the communication between an application and a
kernel module.

synertronixx Page 28/44 17.01.11

EVB9520 Getting Started

Figure 26: The connection between kernel module and application.

synertronixx Page 29/44 17.01.11

EVB9520 Getting Started

The modules should provide the features of the VFD and the IOs (switches and LEDs).
The address of the memory PXA_CS3_PHYS is defined in the header
asm/arch/scb9520.h. To access their functions the well known Linux calls open, close,
write, read and ioctl are implemented.

 4.2 The I/O module
Developing modules for the Linux kernel follows every time the same procedure. The 5
most important calls are open, close, read, write and ioctl.

The names of these calls will be connected to functions which must be developed. The
connection will be generated with a structure of type struct file operations, see listing 2.
The names of the functions are not important, but if you want to have well readable code,
use self explaining names, like the names you can see below.

● IOOpen

● IOClose

● IORead

● IOWrite

● IOIoctl

struct file_operations {
 struct module *owner;
 ssize_t (*read) (struct file *, char __user *, size_t,
 loff_t *);
 ssize_t (*write) (struct file *, const char __user *,
 size_t, loff_t *);
 int (*ioctl) (struct inode *, struct file *,
 unsigned int, unsigned long);
 int (*open) (struct inode *, struct file *);
 int (*release) (struct inode *, struct file *);
};

Listing 2: Some elements of the structure struct file_operations.

In listing 2 you just see a part of this structure. The components we don't need here are
not mentioned.

The assignment of the IOOpen() function to the open call is done by the addresses of the
functions, see listing 3. The other calls will be connected to the other functions in the same
way.

The assignment from the macro THIS_MODULE to the owner call is done for security. If
this assignment has been done, the module cannot be unloaded during it is used.

synertronixx Page 30/44 17.01.11

EVB9520 Getting Started

static struct file_operations fops = {
 .owner = THIS_MODULE,
 .ioctl = IOIoctl,
 .open = IOOpen,
 .write = IOWrite,
 .read = IORead,
 .release = IOClose,
};

Listing 3: The assignment of the functions to the structure fops.

To connect the hardware (kernel module) with the software (application), you need a
device file. In this case we create a character device with the following command.

mknod /dev/io0 c 242 1
The parameter c creates a character device with major number 242 and the minor number
1. The major number binds the module to this file. This number with this minor number is
unique in the whole system.

module_init(IOinit);
module_exit(IOexit);

static int __init IOinit(void)
{
 CS3_mem = ioremap(PXA_CS3_PHYS, 0x2);
 if(register_chrdev(DRIVER_MAJOR, "io", &fops) != 0){
 printk("register_chrdev failed\n");
 return -EIO;
 }
 io_infos.amount_leds=8;
 io_infos.amount_switches=8;
 return 0;
}
static void __exit IOexit(void)
{
 unregister_chrdev(DRIVER_MAJOR,"io");
 iounmap(CS3_mem);
}
module_init(IOinit);
module_exit(IOexit);

Listing 4: The functions to load and unload the module.

In listing 4 you can see one way to load and unload this module. The command insmod
io_scb9520.ko calls the function IOInit(). register_chrdev() registers the module with its
major number to the kernel. The function ioremap() allocates some memory.

synertronixx Page 31/44 17.01.11

EVB9520 Getting Started

To unload this module use rmmod io_scb9520. Now the function unregister_chrdev()
unregisters the module and iounmap() frees the allocated memory.

static int
IOOpen (struct inode *io_device, struct file *instance)
{
 return 0;
}

Listing 5: Die IOOpen-Funktion.

In Listing 5 you can see the dialogue for the open call. The parameters are struct inode
*io_device and struct file *instance. The first one contains all elements, which defines the
device file, e.g. owner and access rights. The second parameter allows to control the
mode you access the device, reading, writing or both. In this function you can handle the
access mode, but this is not used in this example.

static int
IOClose(struct inode *io_device, struct file *instance)
{
 return 0;
}

Listing 6: The IOClose function.

In Listing 6 you can see the IOClose function.

static int
IOWrite(struct file *file, const char __user *user,\
 size_t cnt, loff_t *offset)
{
 int ret_val = 0;
 struct IOInOut io_in_out;
 if(copy_from_user(&io_in_out, user, cnt)!=0){
 printk("Too much for 8 LEDs...\n");
 ret_val = -1;
 }
 writeb(io_in_out.leds, CS3_mem);
 return ret_val;
}

Listing 7: The IOWrite function.

In Listing 7 you can see how to set the LEDs. The function copy_from_user() is used to
copy data from user space to kernel space. The parameters of the function are the
address of the source variable and the address from the destination variable. The last one

synertronixx Page 32/44 17.01.11

EVB9520 Getting Started

is the amount of bytes to copy. The function returns the amount of bytes, who still need to
be copied. If everything could be copied, it returns 0. writeb() writes one byte to the
address, given as second parameter. The first parameter is the value to be copied.

static int
IORead(struct file *file, char __user *user, size_t cnt,\

loff_t *offset)
{
 int ret_val = 0;
 struct IOInOut io_in_out;
 io_in_out.switches=readw(CS3_mem);
 if(copy_to_user(user, &io_in_out, cnt)!=0){
 printk("Too much for 8 switches...\n");
 ret_val = -1;
 }
 return ret_val;
}

Listing 8: The IORead function.

You can see the IORead() function in listing 8. In this function one byte will be read from
the address CS3_mem. With the copy_to_user() function the byte is copied from kernel
space into user space. The parameters from copy_to_user() are the address out from user
space, the address from kernel space and the amount of bytes to copy. This function also
gives back the missing bytes. If all could be copied, 0 will be returned.

static int
IOIoctl(struct inode *io_device, struct file *instance,\
 unsigned int cmd, unsigned long arg)
{
 int ret_val;
 switch (cmd){
 case IO_GET_INFOS:
 copy_to_user((void*)arg, &io_infos, \
 sizeof(io_infos));
 ret_val = 1;
 break;
 default:
 printk("IO ioctl command not known\n");
 ret_val = -1;
 }
 return ret_val;
}

Listing 9: The IOIoctl function.

synertronixx Page 33/44 17.01.11

EVB9520 Getting Started

To implement simple commands you can use ioctl(). To do such things, you just give a
special parameter to the call and in the ioctl() function it will be analysed. The special
parameters are just simple defines out of the header io_scb9520.h. In listing 9 you can
see a short example.

 4.2.1 The VFD modul

As already mentioned all modules are quite similar, so the vfd_scb9520 module also looks
quite similar as the io_scb9520 module. This module controls the VFD module. It also
uses the functions register_chrdev() and unregister_chrdev() for this. One additional
function is the VFDFirstInit(), which initializes the module and sets settings to the VFD.
The bytes we send to it, are given in the listing 10 below. The meaning of these keywords
can be read in the data sheet.

static void
WaitPBusy (void)
{
 while(readb(CS3_mem+2)&0x80);
 udelay(10);
}

Listing 10: The function WaitPBusy() waits for a successful completion of the command.

When you write commands or data to the display, you must be sure, that the command is
already completed before you can write the next command or data to it. For this you can
check the PBusy bit. If this becomes 0, the command is completed. Unfortunately the
SCB9520 is too fast and so we must wait with the delay function.

Normally you try to prevent waiting with delay or sleep, because it is so called active
waiting.

 4.2.2 The I²C bus

The Linux kernel provides a generic I²C bus kernel module to handle I²C devices. You can
access the devices which are used in this application with the well known commands like
open, close, read, write and ioctl.

For further information please refer to Philips and their specifications.

 4.3 The application

 4.3.1 A description of the application

This application is a demonstration to give a little help into driver and application
development under Linux. The application evb9520 consists of several C and header files.
A short list of the files is given below.

● evb9520.c

synertronixx Page 34/44 17.01.11

EVB9520 Getting Started

● ads.c/h

● clock.c/h

● io.c/h

● serial_comA2.c/h

● serial_com0.c/h

● server.c/h

● terminal.c/h

● vfd.c/h

With the buttons you can control the board. With S8 you increment the menu and with S7
you can decrement the menu. In menu 0 you can read the time on the VFD, in menu 1 you
can read the current analogue value and on menu 2 and 3 you can read the input from
/dev/ttySA2 and /dev/ttyS0.

Figure 27: Controlling the board with the buttons.
On the figure 27 above you can see a controlling sequence. With the buttons the menu is
set.

Another way to control the board is the TCP/IP protocol. For this you need a MS Windows
PC equipped with the application DeviLANControl. To establish the connection, please
have a look some chapters before.

synertronixx Page 35/44 17.01.11

EVB9520 Getting Started

Figure 28: Controlling the board with TCP/IP.

The main routine first opens the following devices vfd0, i2c0, io0, ttyS0 and ttySA2. If one
device could not be opened the application breaks. The serial devices are set to none
blocking.

In figure 29 you can see an overview of the routine main(). In this function a do while loop
runs until the variable running becomes 0. With IOSetLeds() the LEDs will be set. On
hitting one button the function SetMenu() will be called. The select() function watches the
TCP/IP messages. If there is one network message, the routine ServerGetMsg() will be
called and will give it to the DataHandler() function, which analyses the received
messages.

synertronixx Page 36/44 17.01.11

EVB9520 Getting Started

Figure 29: The main routine.
In Figure 30 you can see the SetMenu() function. These function creates the menu, which
you see on the VFD.

● Menü 0 : Time.

● Menü 1 : Analogue value.

● Menü 2 : Input from ttySA2.

● Menü 3 : Input from ttyS0.

● Menü 4-9 : Free for use.

synertronixx Page 37/44 17.01.11

EVB9520 Getting Started

Figure 30: The SetMenu routine.
In figure 31 the DataHandler() is explained. The ServerGetMsg() reads the TCP stream
until EOL (End Of Line). After that, it calls the DataHandler(), which analyses the string
with the help of the strstr() routine.

synertronixx Page 38/44 17.01.11

EVB9520 Getting Started

Figure 31: The DataHandler routine.

 4.3.2 The buttons and LEDs

The buttons and LEDs are accessed with the help of the io0 device. This device is created
at boot up. These IOs can be read and written. For this you also use the commands open,
close, write, read and ioctl.

You can read out every pushed button and set the LEDs. The function ToggleBit() helps
you to invert the current state of one LED.

 4.3.3 The real time clock

The RTC (real time clock) is implemented with the I²C bus. Communication over I²C
follows everytime the same procedure. There are two communication partners. One is the
master and the other is the slave. On every communication the SCB9520 is the master
and the RTC or the ADC is the slave.

The first step is to open the i2c0 device with the help of the open call. In the next line you
see the command to set the RTC to slave.

ioctl(fd_clock, I2C_SLAVE_FORCE, 0x68)
fd_clock is the file descriptor which shows to the I²C device, I2C_SLAVE_FORCE is an
ioctl command out of the generic Linux driver. The 0x68 or 68H is the address of the real

synertronixx Page 39/44 17.01.11

EVB9520 Getting Started

time clock.

Then you read from the device or write something to it. Everytime you read or write to the
device, you read or write 8 bytes. To convert the numbers from decimal to BCD or back,
you can use the routines DecToBcd() and BcdToDec(). Before you use these functions you
have to mask the not needed bits. Please have look at the source code or the data sheet
for those bits.

You must write to the RTC at least once, before you read the first time from it.

 4.3.4 The analogue digital converter

The analogue digital converter (ADC) measures the differential voltage which applies to its
input pins VIN- and VIN+. We access the ADC also over the I²C bus. Its address is 4AH.
Like the RTC first you have to open the device and set it to slave.

ioctl(fd_ads1110, I2C_SLAVE_FORCE, 0x4A)
Referring to the data sheet, you have to read three bytes and you can write one byte to it.

The first two bytes contain the data and the last the settings. The settings mainly consist
of the baud rate and the gain. The configuration for continuous or single mode is set once
in the beginning of the application.

int config_reg[4][2]={{2048,1}, {8192,2}, {16384,4},{32768,8}};
To identify the gain or the baud rate, the array above is used. The first part of the array is
the mincode and the second part is the gain.

First we mask the gain bits and read out the gain with help of the array above. Secondly
we mask the baud rate bits, shift them twice left and use also the array above to get the
baud rate value.

Below you can see a little example how to mask the right bits.

gain = configure_reg[buf[2]&0x03][0];
baudrate = configure_reg[(buf[2]&0x0C>>2)][1];

 4.3.5 The VFD module

If you want to use the VFD, you have to load the module vfd_scb9520.ko.

To access the display you can use the usually used calls like open, close, read, write und
ioctl. The ioctl command offers several functions, see table 6.

synertronixx Page 40/44 17.01.11

EVB9520 Getting Started

command function

VFD_GET_INFO return the manufacturer and name of the display

VFD_OFF turn display off

VFD_SET_CURSOR_LINE1_POS1 set cursor to line 1 position 1

VFD_SET_CURSOR_LINE2_POS1 set cursor to line 2 position 1

VFD_CLEAR_DISPLAY clear the display

VFD_GO_XY set cursor to position X Y

VFD_CLEAR_LINE_1 clear line 1

VFD_CLEAR_LINE_2 clear line 2

Table 6: ioctl commands for the display.

Almost every command gets a NULL as third parameter. Just the commands VFD_GO_XY
and VFD_GET_INFO get an address to copy some data from or to kernel space.

 4.3.6 Communication with TCP sockets

During the application evb9520 is running, one socket is open and searches for an
incoming connection from another application like DeviLANControl. If a connection could
be set up, the routine ServerConnect() starts and opens a server socket to look for the port
in the file /etc/network/interfaces. If there is no port entry, it uses the default port 3333 and
writes this one to the file interfaces. The server socket is started with the option
SO_REUSEADDR, so the port can be used immediately after disconnecting. Usually, a
used port is locked for about two minutes after disconnecting, but in this case, this security
feature is not needed.

TCP connections don't loose data like UDP connections. But if the data can be divided into
two or more pieces, this depends on traffic and frame size. Because of this, the routine
ServerGetMsg() reads until an end of line (EOL, 0DH) could be found in the string. If one
could be found, the function DataHandler() is called and searches for special keywords in
the string.

All keywords are listed in table 7.

synertronixx Page 41/44 17.01.11

EVB9520 Getting Started

Table 7: keywords for socket communication.

keyword parameter description

 get_config none sends the name of the module, the state of the LEDs
and switches, the time, the gain and the baud rate
and the analogue value from the ADC

data_renew none sends the current state of the switches, ADC and the
time

porta leds sets the LEDs to the value of the variable leds

adc_baudrate ads1110_sps set the baud rate

adc_gain ads1110_gain sets the gain

time time (s.u.) sets the time

mode menu set the menu

The value for the variable leds must be between 0 and 255 and it has to be sent in
hexadecimal. The baud rate can be 15, 30, 60 or 240, the gain must be 1, 2, 4 or 8. The
variable menu has a range from 0 to 9, but just 0 to 3 has a function and the rest is free for
use. The string to set the time must look like this: 23:12:59 Tue, 31.12.2099

Please beware of case sensitivity.

Here are some examples of how to use the keywords.

get_configure
data_renew
adc_baudrate 240
adc_gain 2
time 23:12:59 Tue, 31.12.2099
mode 1

 4.4 The rc script
At boot up the script S99scb9520 is executed. You can find this script in the directory
/etc/init.d. The rules for the names are quite simple. The name must start with a capital 's',
then there must be a number and then a random string may follow. The number decides
the order in which the scripts will be executed. Our script got number 99, so we can be
sure, that it is the last one to be executed.

If you run the script with the parameter 'start', it loads the modules 8250, i2c_pxa, i2c_dev,
vfd_scb9520 and io_scb9520. It creates the device characters and starts the applications
udp_config and evb9520 in the background. To stop the applications, use the following
commands.

synertronixx Page 42/44 17.01.11

EVB9520 Getting Started

killall udp_config
killall evb9520

#!/bin/sh
if ["$VERBOSE" != no]
then
 echo -n "Initializing EVB9520... "
 echo ""
fi
case "$1" in
 start|"starting all modules and apps")
 if [‘ls -l /dev/io0 2>/dev/null|wc -l‘ -eq 0]
 then
 echo /dev/io0 missing, starting io.sh to create it
 /root/io.sh
 else
 echo /dev/io0 already exists, so nothing has to be done
 fi
 if [‘ls -l /dev/vfd0 2>/dev/null|wc -l‘ -eq 0]
 then
 echo /dev/vfd0 missing, starting vfd.sh to create it
 /root/vfd.sh
 else
 echo /dev/vfd0 already exists, so nothing has to be done
 fi
 if [‘ls -l /dev/ttyS0 2>/dev/null|wc -l‘ -eq 0]
 then
 echo /dev/ttyS0 missing, starting serial.sh to create it
 /root/serial.sh
 else
 echo /dev/ttyS0 already exists, so nothing has to be done
 fi
 modprobe i2c-dev
 modprobe i2c-pxa
 modprobe 8250

synertronixx Page 43/44 17.01.11

EVB9520 Getting Started

 insmod /root/modules/io_scb9520.ko 2>/dev/null
 insmod /root/modules/vfd_scb9520.ko 2>/dev/null
 /usr/local/bin/udp_configure &
 /usr/local/bin/evb9520 &
 ;;
 stop)
 echo "stopping all modules"
 killall evb9520 2>/dev/null
 killall udp_configure 2>/dev/null
 rmmod i2c-dev 2>/dev/null
 rmmod i2c-pxa 2>/dev/null
 rmmod /root/modules/io_scb9520.ko 2>/dev/null
 rmmod /root/modules/vfd_scb9520.ko 2>/dev/null
 echo "removing all files"
 rm /dev/io0 2>/dev/null
 rm /dev/vfd0 2>/dev/null
 ;;
 *)
 echo "Usage:S99scb9520 {start|stop}" >&2
 exit 1
 ;;
esac

Listing 11: The rc-script

The script in listing 11 first checks, if the files /dev/io0, /dev/vfd0 and /dev/ttyS0 exist and, if
not, creates them.

With the parameter 'stop' it unloads all modules with the help of rmmod and stops the
applications with the command killall. killall quits applications depending on their names
and not on their PID (process identifier).

To quit applications with killall use this command like this:

killall evb9520
killall udp_configure
To create the files, there are several little shell scripts to execute. For creating the io0 file
execute io.sh and so on. All these files are quite similar, they just create the file with the
command mknod. Look one line below for a simple example.

mknod /dev/vfd0 c $IO_MAJOR $IO_MINOR

synertronixx Page 44/44 17.01.11

EVB9520 Getting Started

	 1 Getting Started
	 1.1 Set up the Evaluation Board
	 1.2 Using the serial interface (Linux)
	 1.3 Using the serial interface (MS Windows)
	 1.4 Compiling applications for the EVB9520
	 1.4.1 Compiling "Hello World!"
	 1.4.2 Compiling the example evb9520

	 2 Controlling the application
	 2.1 Using buttons to control
	 2.2 Controlling with the help of DeviLANControl

	 3 The hardware
	 3.1 The structure
	 3.2 The real time clock
	 3.3 The analogue digital converter
	 3.4 The VFD Display
	 3.5 The interfaces

	 4 The software
	 4.1 The kernel
	 4.2 The I/O module
	 4.2.1 The VFD modul
	 4.2.2 The I²C bus

	 4.3 The application
	 4.3.1 A description of the application
	 4.3.2 The buttons and LEDs
	 4.3.3 The real time clock
	 4.3.4 The analogue digital converter
	 4.3.5 The VFD module
	 4.3.6 Communication with TCP sockets

	 4.4 The rc script

